Articles
  • Quenching process effects on the performance of a TiO2 photoelectrode for dye-sensitized solar cells
  • Woon-Yong Parka and Ki-Tae Leea,b,c,*

  • aDivision of Advanced Materials Engineering, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
    bDepartment of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeonbuk 54896, Republic of Korea
    cHydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonbuk 54896, Republic of Korea

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References
  • 1. J. Gong, J. Liang, and K. Sumathy, Renew. Sustain. Energy Rev. 16[8] (2012) 5848-5860.
  •  
  • 2. J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, Renew. Sustain. Energy Rev. 68 (2017) 234-246.
  •  
  • 3. M.S. Ahmad, A.K. Pandey, and N.A. Rahim, Renew. Sustain. Energy Rev. 77 (2017) 89-108.
  •  
  • 4. K. Sharma, V. Sharma, and S.S. Sharma, Nanoscale Res. Lett. 13[1] (2018) 381.
  •  
  • 5. S. Thomas, T.G. Deepak, G.S. Anjusree, T.A. Arun, S.V. Nair, and A.S. Nair, J. Mater. Chem. A 2[13] (2014) 4474-4490.
  •  
  • 6. K.H. Ko, Y.C. Lee, and Y.J. Jung, J. Colloid Interface Sci. 283[2] (2005) 482-487.
  •  
  • 7. W. Wunderlich, T. Oekermann, L. Miao, N.T. Hue, S. Tanemura, and M. Tanemura, J. Ceram. Process. Res. 5[4] (2004) 343-354.
  •  
  • 8. X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, and C.A. Grimes, Nano Lett. 8[11] (2008) 3781-3786.
  •  
  • 9. Y. Jiang, M. Li, R. Ding, D. Song, M. Trevor, and Z. Chen, Mater. Lett. 107 (2013) 210-213.
  •  
  • 10. B.H. Lee, M.Y. Song, S.-Y. Jang, S.M. Jo, S.-Y. Kwak, and D.Y. Kim, J. Phys. Chem. C 113[51] (2009) 21453-21457.
  •  
  • 11. J.M. Macak, H. Tsuchiya, A. Ghjcov, and P. Schmuki, Electrochem. Commun. 7[11] (2005) 1133-1137.
  •  
  • 12. S.I. Noh, T.-Y Seong, and H.J. Ahn, J. Ceram. Process. Res. 13[4] (2012) 491-494.
  •  
  • 13. J. Navas, C. Fernadez-Lorenzo, T. Agulilar, R. Alcantara, and J. Martin-Calleja, Phys. Status Solidi A 209[2] (2012) 378-385.
  •  
  • 14. Q. Liu, Y. Zhou, Y. Duan, M. Wang, and Y. Lin, Electrochim. Acta 95 (2013) 48-53.
  •  
  • 15. M.S. Mahmoud, M.S. Akhtar, I.M.A. Mohamed, R. Hamdan, Y.A. Dakka, and N.A.M. Barakat, Mater. Lett. 225 (2018) 77-81.
  •  
  • 16. P. Wang, S.M. Zakeeruddin, J.E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazzeruddin, and M. Gratzel, Adv. Mater. 16[20] (2004) 1806-1811.
  •  
  • 17. W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang, Chem. Mater. 22[5] (2010) 1915-1925.
  •  
  • 18. S. Chinnasamy and S. Ramanathan, J. Ceram. Process. Res. 21[1] (2020) 123-130.
  •  
  • 19. C.M. Elliott, Nat. Chem. 3[3] (2011) 188-189.
  •  
  • 20. P. Wang, S.M. Zakeruddin, I. Exnar, and M. Gratzel, Chem. Commun. 24 (2002) 2972-2973.
  •  
  • 21. M.-J. Jeng, Y.-L. Wung, L.-B. Chang, and L. Chow, Int. J. Photoenergy 2013 (2013) Article ID 563897.
  •  
  • 22. Y.J. Son, J.S. Kang, J.J. Yoon, J. Kim, J.W. Jeong, J.H. Kang, M.J. Lee, H.S. Park, and Y.-E. Sung, J. Phys. Chem. C 122[13] (2018) 7051-7060.
  •  
  • 23. W.Y. Park and K.T. Lee, J. Ceram. Process. Res. 22[5] (2021) 584-589.
  •  
  • 24. S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, and M. Gratzel, Prog. Photovolt.: Res. Appl. 15[7] (2007) 603-612.
  •  
  • 25. A.I. Kontos, A.G. Kontos, D.S. Tsoukleris, M.-C. Bernard, N. Spyrellis, and P. Falaras, J. Mater. Process. Technol. 196[1-3] (2008) 243-248.
  •  
  • 26. B. Roose, S. Pathak, and U. Steiner, Chem. Soc. Rev. 44[22] (2015) 8326-8349.
  •  
  • 27. R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, and F. Levy, Int. J. Appl. Phys. 75[6] (1994) 2945-2951.
  •  
  • 28. B. O’Regan and M. Gratzel, Nature 353[6346] (1991) 737-740.
  •  
  • 29. Y.J. Kim, M.H. Lee, H.J. Kim, G. Lim, Y.S. Choi, N.-G. Park, K.K. Kim, and W.I. Lee, Adv. Mater. 21[36] (2009) 3668-3673.
  •  
  • 30. R. Govindaraj, M.S. Pandian, P. Ramasamy, and S. Mukhopadhyay, Bull. Mater. Sci. 38[2] (2015) 291-296.
  •  
  • 31. T.P. Chou, Q. Zhang, B. Russo, G.E. Fryxell, and G. Cao, J. Phys. Chem. C 111[17] (2007) 6296-6302.
  •  
  • 32. K.S. Park, Q. Zhang, D. Myers, and G. Cao, ACS Appl. Mater. Interfaces 5[3] (2013) 1044-1052.
  •  
  • 33. S. Nakade, Y. Saito, W. Kubo, T. Kanzaki, T. Kitamura, Y. Wada, and S. Yanagida, Electrochem. Commun. 5[9] (2003) 804-808.
  •  
  • 34. S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, J. Phys. Chem. B 107[33] (2003) 8607-8611.
  •  
  • 35. S.C. Yang, D.J. Yang, J.K. Kim, J.M. Hong, H.G. Kim, and I.D. Kim, Adv. Mater. 20 (2008) 1059-1064.
  •  
  • 36. S. Muduli, O. Game, V. Dhas, K. Vijayamohanan, K.A. Bogle, N. Valanoor, and S.B. Ogale, Solar Energy 86[5] (2012) 1428-1434.
  •  
  • 37. K. Guo, M. Li, X. Fang, X. Liu, B. Sebo, Y. Zhu, Z. Hu, and X. Zhao, J. Power Source 230 (2013) 155-160.
  •  
  • 38. N. Chander and M.R. Samantaray, IEEE J. Photovoltaics 11[5] (2021) 1213-1221.
  •  
  • 39. C.A. Leach, P. Tanev, and B.C.H. Steele, J. Mater. Sci. Lett. 5[9] (1986) 893-894.
  •  
  • 40. K. Niesz, T. Ould-ely, H. Tsukamoto, and D.E. Morse, Ceram. Int. 37[1] (2011) 303-311.
  •  
  • 41. . Zhang, J. Zheng, Y. Liu, C. Zhang, W. Hao, Z. Lei, and M. Tian, Mater. Res. Bull. 115 (2019) 49-54.
  •  
  • 42. .C. Maurya, S. Senapati, S. Singh, P. Srivastava, P. Maiti, and L. Bahadur, Chemistry Select. 3[34] (2018) 9872-9880.
  •  
  • 43. M.J. Jeng, Y.L. Wung, L.B. Chang, and L. Chow, Int. J. Photoenergy 2013 (2013) Article ID 280253.
  •  
  • 44. V.A. González-Verjan, B. Trujillo-Navarrete, R.M. Félix-Navarro, J.D. de León, J.M. Romo-Herrera, J.C. Calva-Yáñez, J. M. Hernández-Lizalde, and E.A. Reynoso-Soto, Mater. Renew. Sustain. Energy 9 (2020) 1-8.
  •  
  • 45. Z.S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Coord. Chem. Rev. 248[13-14] (2004) 1381-1389.
  •  
  • 46. S.N. Karthick, K.V. Hemalatha, C.J. Raj, H.-J. Kim, and M. Yi, J. Ceram. Process. Res. 13[S1] (2012) 136-139.
  •  
  • 47. A. Aboulouard, B. Gultekin, M. Can, M. Erol, A. Jouaiti, B. Elhadadi, C. Zafer, and S. Demic, J. Mat. Res. Tech. 9[2] (2020) 1569-1577.
  •  
  • 48. Y. Kim, B.J. Yoo, R. Vittal, Y. Lee, N.-G. Park, and K.-J. Kim, J. Power Sources 175[2] (2008) 914-919.
  •  
  • 49. D. Kim, K. Lee, H. Lee, J. Lim, and J. Park, J. Kor. Cryst. Growth and Cryst. Tech. 30[2] (2020) 61-65.
  •  
  • 50. C.-P. Hsu, K.-M. Lee, J.T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tasi, and K.-C. Ho, Electrochim. Acta 53[25] (2008) 7514-7522.
  •  
  • 51. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Electrochim. Acta 47[26] (2002) 4213-4225.
  •  
  • 52. S. Sarker, A.J.S. Ahammad, H.W. Seo, and D.M. Kim, Int. J. Photoenergy 2014 (2014) Article ID 851705.
  •  

This Article

  • 2022; 23(2): 199-207

    Published on Apr 30, 2022

  • 10.36410/jcpr.2022.23.2.199
  • Received on Oct 28, 2021
  • Revised on Dec 30, 2021
  • Accepted on Jan 10, 2022

Correspondence to

  • Ki-Tae Lee
  • aDivision of Advanced Materials Engineering, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
    bDepartment of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeonbuk 54896, Republic of Korea
    cHydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
    Tel : +82-63-270-2290 Fax: +82-63-270-2386

  • E-mail: ktlee71@jbnu.ac.kr