O U R N A L O F

Ceramic Processing Research

Preparation and photocatalytic activity of apatite-precipitated TiO₂

K. Soysal^a, J. Park^{b,}, S.H. You^{c,*}, D.W. Shin^c, W.T. Bae^c and A. Ozturk^a

^aDepartment of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, 06531 Turkey ^bDepartment of Materials Engineering, Atilim University, Ankara, 06836 Turkey ^cDivision of Advanced Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, Gyeongnam, 660-701 Korea

Apatite was precipitated on the surface of titanium dioxide (TiO₂) powder by a biomimetic process. The precipitation was accomplished by immersing TiO₂ powder in simulated body fluid (SBF) for 1, 3, 6, 12 and 24 h. Photocatalytic activity of the apatite-precipitated TiO₂ (HAp-TiO₂) powders was investigated to assess the decomposition of methylene blue (MB) in aqueous solution and the removal of acetaldehyde gas under UV irradiation. Hydroxyapatite precipitation enhanced the photocatalytic activity of the TiO₂ powder. The time required for the complete degradation of MB decreased from 3.5 to 2 h with the immersion of TiO₂ powders in SBF for 3 h. In terms of acetaldehyde gas decomposition, less than 1 h was sufficient to achieve complete removal for HAp-TiO₂ powder but at least 2 h were required for the bare TiO₂ powder. HAp-TiO₂ powders could therefore be a promising candidate photocatalyst for environmental purification.

Key words: TiO₂ powder, Apatite, Simulated Body Fluid, Photocatalyst.

Introduction

Titanium dioxide (TiO₂) is of interest for its ability to photodegrade and eliminate many organic and inorganic pollutant chemicals [1-4]. When exposed to ultraviolet (UV) light, the TiO₂ photocatalyst generates an oxidizing effect that eliminates harmful substances by decomposing them into nontoxic materials. Light irradiation of photocatalytic TiO₂ has been already used successfully for the photodegradation of a wide variety of organic compounds [5, 6].

Titanium dioxide is also an attractive material because of its chemical stability, low toxicity, low pollution load, and low cost. However, the utilization of TiO₂ in industrial applications is limited. When blended into organic materials, such as organic paint, textiles, plastics, or paper, TiO₂ tends to decompose these materials photochemically [7.8]. In addition, due to its lack of ability to attract substances, TiO_2 can only decompose substances that happen to come into contact with it, and its decomposing action fails to work when there is no impinging light [1, 9]. Attempts have been made to improve the photocatalytic activity of TiO₂. Some experiments have involved reducing the grain size of TiO₂ powder and doping with transition or noble metals [10-12]. Apatite (HAp) coating on the surface of TiO₂ substrates has also been tried using various coating techniques [13, 14]. The HAp has demonstrated efficiency in the absorption of bacteria, viruses, NOx and ammonia [15, 16]. Recently, Park [17] produced apatite-precipitated

Fax: +82-55-7581987

potassium titanate whiskers and observed that HApprecipitated whiskers have stronger photocatalytic activity than bare potassium titanate whiskers. However, there is still a need for systematic research into the mechanism of apatite precipitation and its effect on the photocatalytic activity. A better understanding of the photocatalytic activity of HAp-precipitated TiO_2 powders is essential if they are to be technologically useful.

The present study was undertaken to assess the influence of apatite precipitation on the photocatalytic activity of TiO_2 powders. This was evaluated by measuring the decomposition rate of methylene blue (MB) in aqueous solution and the degradation of acetaldehyde gas under UV irradiation. The adsorption-degradation mechanism and kinetics were determined with respect to initial MB and TiO_2 concentrations.

Experimental Procedure

Preparation of HAp-TiO₂ powder

The chemical and physical properties of the commercial photocatalyst TiO₂ (Nano Co., S. Korea, NT-22) are listed in Table 1. Apatite precipitation on the surface of the TiO₂ powder was accomplished by immersing the powders in SBF for 1, 3, and 6 h at 37 °C. The SBF had concentrations of calcium and phosphate ions 10 times greater than those of human blood plasma: hereafter the SBF is termed 10×SBF. The ion concentrations of human blood plasma and the 10×SBF are presented in Table 2. The 10×SBF solution was prepared by dissolving appropriate quantities of analytical-grade chemicals of NaCl, KCl, CaCl₂·2H₂O, MgCl₂·6H₂O, NaH₂PO₄ and NaHCO₃ into deionised water,

^{*}Corresponding author: Tel:+82-55-7515325

E-mail: yshee1@yahoo.co.kr

Table 1. Chemical and Physical properties of TiO₂ powder used in this study [18]

Component						Value			
Crystall	Anatase								
TiO_2 con		> 98.7							
Specific Surface Area (m ² /g)						101.5			
1 st Particle Size (nm)						20~30			
2 nd Particle Size (im)						1~1.5			
Appearance Density (g/cc)						0.30~0.35			
Table 2. Ion concentrations (mM) of blood plasma and $10 \times SBF$									
Media	Na ⁺	K^+	Mg^{2+}	Ca ²⁺	Cl	HCO ₃	HPO_4^2	SO_4^2	
Blood plasma	42.0	5.0	1.5	2.5	103.0	27.0	1.0	0.5	

and then buffering at pH 7.4 using tri (hydroxymethyl) aminomethane and 1 M HCl solution. All reagents were analytical grade and used without further purification. After immersion, the powders were removed from the solution, washed with de-ionized water, dried at room temperature, and heat-treated at 200 °C for 0.5 h.

1010.0 5.0 5.0 25.0 1065.0 10.0

10.0 0

Characterization

 $10 \times SBF$

The crystalline phase(s) precipitated on the surface of the TiO₂ powder during immersion in $10 \times SBF$ were identified by an X-ray diffractometer, XRD, (Rigaku Geigerflex-DMAK/B). Each sample was scanned from 20 to 50° 20 at a rate of 2°/minute by 0.02° increments continuously. The crystal morphology of the TiO₂ powders was examined with a scanning electron microscope, SEM (Jeol 6400). Quantitative elemental analyses, specific surface area measurements, and structural analyses of the TiO₂ powders were performed by Energy Dispersive Spectroscopy, EDS, (Noran Instruments), BET surface area analyser (Micromeritics), and Fourier transform infrared spectroscopy, FTIR, (Perkin-Elmer), respectively.

Photodecomposition of methylene blue (MB)

Photocatalytic activity of the TiO₂ powders immersed in 10×SBF for various durations was determined using an aqueous MB solution. The MB concentration in the aqueous solution was kept constant at 10 mg/l. A 300 ml quantity of the MB solution and 0.3, 0.6, or 1 g of TiO₂ powder was mixed to obtain a suspension. Prior to photo-irradiation, the suspension was magnetically stirred at a constant stirring rate of 500 rpm in the dark for 0.5 h to allow the TiO₂ powders to absorb the MB solution and to establish absorption-desorption equilibrium. Then the suspension was irradiated by a 100 W UV lamp (UVP Co., 360 nm). In order to prevent any light-induced heat, the suspension was cooled with a water-cooling appliance during the entire duration of the test. Every 30 minute analytical samples were taken from the suspension. The UV-vis absorption rates of the samples were measured at a wavelength of 664 nm, using a UV-vis spectrophotometer (Optima SP-300). The change of absorbance intensity with UV irradiation time was monitored until complete degradation was attained.

Gas decomposition test

The decomposition and removal of acetaldehyde gas was measured under UV irradiation to investigate the photocatalytic air purification effects of bare or apatite-precipitated TiO_2 powders. A quantity of 0.5 g of photocatalytic powder was mixed with distilled water and placed on glass Petridishes of 100×18 mm (diameter × depth) to obtain a flat and homogeneous layer of the photocatalyst. The dishes were placed into a 3 L Tedla bag with an initial concentration of 100 ppm of acetaldehyde gas. Under UV lamp irradiation, the change of acetaldehyde concentration in the Tedla bag was monitored by gas detector tubes (Gastec Co.) every 15 minute for up to 2 h or until complete decomposition was achieved.

Results and Discussion

Apatite precipitation on TiO₂ powder

Bare TiO₂ powders and the TiO₂ powders immersed in $10 \times SBF$ for 1, 3, 6, 12, and 24 h durations are hereafter referred to as unreacted TiO₂, 1HAp-TiO₂, 3HAp-TiO₂, 6HAp-TiO₂, 12HAp-TiO₂, and 24HAp-TiO₂, respectively, according to their immersion durations in $10 \times SBF$. The XRD patterns of the powders indicate the characteristic (101) diffraction peak of anatase TiO₂ at $20 \sim 25.3^{\circ}$ before and after immersion of the powders in $10 \times SBF$ as shown in Fig. 1. A decrease in the intensity of the (101) peak

Fig. 1. XRD patterns of TiO₂ powders before and after immersion in $10 \times SBF$.

and appearance of new peaks in the diffraction patterns suggest the formation of new phase(s) after immersion. A small but visible diffraction peak at 2θ of $\sim 31.6^{\circ}$ related to the (211) plane of apatite crystals [HAp, $Ca_{10}(PO_4)_6(OH)_2$]. The apatite precipitates on the TiO₂ powders displayed a small crystallite size or a poorlycrystallized structure, judging from the diffraction patterns of the apatite-precipitated TiO₂ powders. The HAp peak was absent in the XRD pattern of unreacted TiO₂. Such results are in good agreement with other researchers [19-21]. The intensity of the HAp peak increased slightly in the TiO₂ powders immersed in 10×SBF up to 3 h, but did not appear to change with further periods of immersion, implying that apatite precipitation on TiO₂ powders is limited in these immersion conditions and does not increase with increasing immersion durations beyond 3 h. Therefore, the rest of this study was conducted only on unreacted TiO₂, 1HAp-TiO₂, 3HAp-TiO₂, and 6HAp-TiO₂.

Fig. 2 shows the FTIR spectra of TiO₂ powders before and after immersion in 10×SBF for various durations. An obvious change in the spectrum was observed after immersion of TiO₂ powders in 10×SBF. The intense and broad bands at 3370 and 1640 cm⁻¹ were attributed to the O-H stretching and bending, respectively [19]. Intense bands due to the PO₄³⁻ group at 1000-1100 cm⁻¹ were observed in the apatite-precipitated TiO₂ powders [20]. The narrow bands shown between wavelengths of 2300 and 1800 cm⁻¹ correlated to the attenuated total reflectance (ATR) accessory crystal. Absorption peaks at 1421 and 1460 cm⁻¹ attributed to carbonate ions [22] were observed in powders immersed in 10×SBF. This indicates that the precipitates were composed of HAp only.

Fig. 3 shows the microstructural morphology of TiO_2 powders. It is evident that apatite precipitates are formed on the surface of TiO_2 powders on immersion in 10×SBF. The surface of unreacted TiO_2 is clean and smooth as

Fig. 2. FTIR spectra of TiO₂ powders before and after immersion in $10 \times \text{SBF}$: unreacted TiO₂, (b) 1HAp-TiO₂, (c) 3HAp-TiO₂, and (d) 6HAp-TiO₂.

Fig. 3. SEM micrographs of (a) the unreacted TiO_2 powders and the apatite-precipitated TiO_2 powders after immersion in $10 \times SBF$ for (b) 1 h, (c) 3 h, and (d) 6 h.

shown in Fig. 3(a), but becomes covered with the apatite precipitates after immersion in 10×SBF for 1 and 3 h as best shown in the insets to Figs. 3(b) and (c), respectively. When the immersion duration was increased to 6 h, the surface morphology resembled the morphology of the unreacted TiO₂ powders as seen in Fig. 3(d). The change in surface morphology with increasing immersion durations could be interpreted as follows: Some amounts of Ca and P ions separated from the TiO₂ surface, because the change in ion concentrations in the 10×SBF induced the Ca and P ions to be re-dissolved. The quantity of apatite precipitates increased to 8.3 weight percentage (wt%) with 3 h of immersion, then decreased to 7.3 wt% with 6 h of immersion. The quantity of apatite precipitates as determined by EDS analysis and the BET specific surface area of the TiO₂ powders before and after immersion in 10×SBF are presented in Table 3. The BET surface area of unreacted TiO₂ decreased from 101.5 to 78.4 m^2/g with 3 h of immersion but increased to $80.2 \text{ m}^2/\text{g}$ with 6 h of immersion. We concluded that the ions in the 10×SBF solution had filled the fine pores between the TiO₂ particles, and that nano-sized pores on the TiO₂ powder's surface were then covered by the apatite precipitates.

EDS analyses of the TiO_2 powders revealed that Ca and P were present in the apatite-precipitated TiO_2 powders; Ca/P ratios were 1.39, 1.06, and 1.16 for 1HAp-TiO₂,

Table 3. Percentage of the apatite precipitates and specific surface area of the TiO_2 powders

TiO ₂ powder	Apatite (wt%)	BET Specific Surface Area (m ² /g)
Unreacted	0	101.5
1HAp-TiO ₂	5.9	82.1
3HAp-TiO ₂	8.3	78.4
6HAp-TiO ₂	7.3	80.2

 $3HAp-TiO_{2}$, and $6HAp-TiO_{2}$, respectively. The Ca/P ratios of the apatite precipitates were lower than 1.67- i.e. the ratio in the adult human bone. With longer immersion time, the Ca/P ratio decreased because of the increase of precipitated P ions on the TiO₂ surface. Analysis suggests that the precipitated HAp has calcium-deficient apatite crystal structure.

Consistent with the XRD and FTIR results, SEM and EDS analyses proved that TiO_2 powders could induce the nucleation and growth of apatite and that apatite precipitates could be obtained on TiO_2 powders. When TiO_2 powders are immersed in $10 \times SBF$, apatite nuclei form on them due to the electrostatic interaction between negatively charged TiO_2 surfaces and the ions in the SBF [23]. After nucleation, the apatite formed on the TiO_2 powder becomes the center of nucleation and growth rather than the TiO_2 surface. The calcium ions, phosphate ions and other minor ions (i.e. CO_3^{2-} and Mg^{2+}) in the SBF solution deposit spontaneously on the TiO_2 surfaces to form apatite precipitates because the SBF solution has been supersaturated with the apatite.

Within the pH range of 7.25-7.40, negatively charged Ti-OH groups are formed on the surface of TiO₂ powders in the SBF solution [19]. Apatite precipitation cannot take place without calcium ions since the Ti-OH groups first combine with a certain number of Ca²⁺ ions in the SBF to form a type of calcium titanate. The calcium titanate then combines with the PO₄³⁻ ions. Subsequently, large amounts of Ca²⁺ and PO₄³⁻ ions are adsorbed onto the surface of the TiO₂ powders to form apatite [24]. A schematic illustration of the possible mechanism of apatite precipitation on TiO₂ powder in SBF is shown in Fig. 4.

Photocatalytic activity of HAp-TiO₂

Fig. 5 illustrates the various levels of MB concentration correlated with duration of UV irradiation for the unreacted and apatite-precipitated TiO_2 powders. It is apparent that all powders are active in the photocatalytic decomposition of MB. When the samples were kept in the dark for 0.5 h, the amount of MB removed by the apatite-precipitated TiO_2 powders was greater than for the unreacted TiO_2 powder which absorbed only 11.7% of MB. The amount

Fig. 5. Photocatalytic degradation of the unreacted and apatiteprecipitated TiO_2 powders.

of MB absorbed in the dark by 1HAp-TiO₂, 3HAp-TiO₂ and 6HAp-TiO₂ was 32.6%, 44% and 38%, respectively. The absorbability of TiO₂ powders increased with increasing additions of apatite precipitates. The complete decomposition of MB was achieved after 4 h exposure to UV illumination for unreacted TiO₂ but this time decreased to 2.5 h for 1HAp-TiO₂, and to 2 h for 3HAp-TiO₂. The complete decomposition of MB for 6HAp-TiO₂ was achieved in a time very similar to that of 3HAp-TiO2. The photocatalytic performance of HAp-TiO₂ was much better than that of the unreacted TiO₂, despite deficiency in BET surface area. Similar results have been obtained by Anmin et al. [25] who explained that the strong adsorption of the intermediates on HAp and their subsequent transfer to TiO_2 may induce a photocatalytic synergy. Yun *et al.* [26] observed beneficial photocatalytic side-effects in carbon-coated TiO_2 and explained that the adsorption of the pollutants on activated carbon and the mass transfer to photocatalytic TiO2 induced effective degradation because of a common interface between the carbon and TiO₂.

The photocatalytic degradation of MB in the presence of HAp-TiO₂ could be described in terms of a first-order kinetic Langmuir-Hinshelwood mechanism [27-29].

Fig. 4. Schematic diagram showing the possible mechanism of apatite formation on TiO_2 powder in $10 \times SBF$.

where k_{ap} is the apparent reaction rate constant. and MB_0 and MB_t are, respectively, the concentrations of MB at time 0 and at time t. The k_{ap} is calculated from the slope of the ln($[MB]_0/[MB]$) versus UV irradiation time curve as shown in Fig. 6. The values of k_{ap} for the TiO₂ powders are listed in Table 4. The k_{ap} value of HAp-TiO₂ is higher than that of unreacted TiO₂ and the highest k_{ap} value is obtained for 3HAp-TiO₂. The apatite precipitates on the surface of TiO₂ increases the kinetic activity of *MB* decomposition since the apatite precipitation attracts the pollutants. As seen in Table 4, the correlation coefficients (R²) have high values, implying that the decomposition of *MB* in this study was obeying the first-order kinetic Langmuir-Hinshelwood mechanism model.

Photocatalyst effects

Photocatalytic effects were investigated by varying the amount of $3HAp-TiO_2$ in the MB solution between 0.3, 0.6, and 1.0 g/l. The variations in MB concentration versus UV irradiation-times are illustrated in Fig. 7. The amount of MB adsorbed in the dark was 44% for 0.3 g/l of $3HAp-TiO_2$, but rose to 51% and 59% for 0.6 and 1.0 g/l of $3HAp-TiO_2$, respectively. The results reveal that photocatalytic activity increases with the amount of photocatalyst in the MB solution. The complete decomposition of MB was achieved after 2 h of UV illumination with 0.3 g/l of $3HAp-TiO_2$, but this time decreased to

Fig. 6. The variation of ln([MB]₀/[MB]) versus UV irradiation time.

Table. 4. The reaction rate constants and correlation coefficientsfor the photocatalytic decomposition of MB.

TiO ₂ Powder	$k_{ap} (h^{-1})$	\mathbb{R}^2
Unreacted	0.7454	0.9885
1HAp-TiO ₂	1.8595	0.9995
3HAp-TiO ₂	3.6549	0.9989
6HAp-TiO ₂	3.4128	0.9975

Fig. 7. Photocatalytic degradation of $3HAp-TiO_2$ versus UV irradiation time.

1.5 h when 0.6 or 1.0 g/l of $3HAp-TiO_2$ was used. Degradation efficiency improved with increasing apatiteprecipitated TiO_2 powder concentration, a result attributable to the increase in total surface area available for contaminant adsorption. Results indicate that the apatite precipitates attracts foreign substances and this enhances photocatalytic activity.

Absorption isotherms

It has been observed that apatite precipitates absorbs MB even in the dark. Absorption of pollutants is an important parameter in determining the photocatalytic degradation rate. Adsorption data obtained in the dark were assessed to find the equilibrium constants of the adsorption of the dye on the surface of the $3HAp-TiO_2$ photocatalyst. According to Langmuir isotherms, the rate of adsorption will increase with increasing concentrations of an adsorbate. However, once sites are occupied, a further increase in adsorbate concentration will not increase the absorbed amount; that is, the saturation point is reached.

The experimental data was fitted to the Langmuir equation (equation (2)) to describe the adsorption of MB on the surface of the $3HAp-TiO_2$ photocatalyst:

$$Y = \frac{KC_e}{1 + KC_e} \tag{2}$$

where Y is the fraction of the photocatalyst surface covered by adsorbed MB molecules; K is the Langmuir equilibrium constant; C_e is the MB equilibrium concentration. Alternatively,

$$Y = \frac{X_e}{X_m} \tag{3}$$

where X_e represents the mg of MB adsorbed per gram of 3HAp-TiO₂ at equilibrium concentration, C_e . X_m is the mass of MB (mg) per gram of 3HAp-TiO₂ needed to form a monolayer. The linear transformation of equation (2) can be expressed by the following equation: Preparation and photocatalytic activity of apatite-precipitated TiO₂

$$\frac{C_e}{X_e} = \frac{C_e}{X_m} + \frac{1}{KX_m} \tag{4}$$

From the MB adsorption isotherm, the plot C_e/X_e versus C_e gives a straight line (R² = 0.9995) with a slope of $1/X_m$ (0.0121) and the interception with the x-axis of $1/KX_m$ (0.0759) as shown in Fig. 8. The results confirm that the Langmuir isotherm is appropriate to describe the adsorption of MB onto the surface of 3HAp-TiO₂. The required amount of MB (mg per gram of 3HAp-TiO₂) to form a monolayer (X_m) is 82.64. The Langmuir adsorption constant (K) is 0.1613. The specific surface area can be estimated by the following equation:

$$S_{MB} = \frac{X_M \times a_{MB} \times N}{M} \tag{5}$$

where S_{MB} is the specific surface area in m²/g; X_m is the quantity of MB molecules adsorbed at the monolayer; a_{MB} is the occupied surface area of one molecule of MB (0.55 × 10⁻¹⁸ m²); [29, 30] N is the Avogadro constant (6.02 × 10²³ /mol); M is the molecular weight of MB (g mol⁻¹). The value calculated for the specific surface area is 73.2 m²/g, which agrees with the value determined by the BET method (78.4 m²/g), as presented in Table 3.

Photocatalytic removal of acetaldehyde gas

The decomposition rates of acetaldehyde gas with different UV irradiation times and for a variety of photocatalysts are illustrated in Fig. 9. All photocatalysts were active in the photocatalytic decomposition of acetaldehyde. The complete removal and degradation of acetaldehyde was attained after 2 h of UV irradiation for unreacted TiO₂. The time for the complete removal and degradation of acetaldehyde decreased to less than 1 h when 3HAp-TiO₂ and 6HAp-TiO₂ powders were used. These results reveal that the apatite precipitates enhances the photocatalytic activity of TiO₂ powders through the ability of the preci-

Fig. 8. The plot C_e/X_e versus C_e for 3HAp-TiO₂.

Fig. 9. Variation in decomposition rate of acetaldehyde with UV irradiation time for the unreacted and apatite-precipitated TiO_2 powders.

pitated apatite phase to absorb air pollutants [9, 27]. The synergistic effect of the HAp-TiO₂ photocatalyst may be due to the strong absorption of the intermediates on HAp and to their subsequent transfer to TiO_2 .

Conclusions

Apatite-precipitated TiO₂ could be successfully synthesized by using a simple and low cost biomimetic process. Apatite precipitation enhanced the adsorbability of TiO₂ powders in the dark; it also influenced photocatalytic activity in methylene blue (MB) solution and the removal of acetaldehyde gas under UV irradiation. We found a correlation between the absorption of MB onto apatite-precipitated TiO₂ and the rate of degradation of MB. The photocatalytic degradation was evidently affected by the initial concentration of the photocatalyst in accordance with the Langmuir-Hinshelwood kinetic model. Apatite-precipitated TiO₂ powders could therefore be a promising candidate photocatalyst for environmental purification.

Acknowledgements

This work was jointly supported by the Scientific and Technical Research Council of Turkey, TUBITAK, project number : 106M531 and by the Korea Research Foundation, KRF, project number : KRF-2006-033-D00010. The authors are grateful to TUBITAK and KRF.

References

- 1. A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1-21.
- O. Legrini, E. Oliveros and A. Braun, Chem. Rev. 93 (1993) 671-698.
- 3. F. Kskadar, A.B.D. Nandiyanto, K.M. Yun, C.J. Hogan, K. Okuyama and P. Biswas, Adv. Mater. 19 (2007) 1408-1412.
- 4. M. Kang, Y.R. Ko, M.K. Jeon, S.C. Lee, S.J. Choung, J.Y. Park, S. Kim and S.H. Choi, J. Photochem. Photobiol. A:

Chem. 173 (2005) 128-136.

- G. Chen, G. Luo, X. Yang, Y. Sun and J. Wang, Mater. Sci. Eng. A 380 (2004) 320-325.
- I.K. Konstantinou and T.A. Albanis, Appl. Catal. B: Environ. 49 (2004) 1-14.
- W.A. Daoud, J.H. Xin and Y.H. Zhang, Surf. Sci. 599 (2005) 69-75.
- X.Z. Li, F.B. Li, C.L. Yang and W.K. Ge, J. Photochem. Photobiol. A. Chem. 141 (2001) 209-217.
- T. Nonami, H. Hase and K. Funakoshi, Catal. Today 96 (2004) 113-118.
- S.H. Woo, W.W. Kim, S.J. Kim and C.K. Rhee, Mater. Sci. Eng. A 449-451 (2007) 1151-1154.
- Y. Su, Y. Xiao, X. Fu, Y. Deng and F. Zhang, Mater. Res. Bull. 44 (2009) 2169-2173.
- H. Tian, J. Ma, K. Li and J. Li, Mater. Chem. Phys. 112 (2008) 47-51.
- M. Iwasaki, Y. Miyamoto, S. Ito, T. Furuzono and W.-K. Park, J. Colloid Interface Sci. 326 (2008) 537-540.
- S. Aryal, S.R. Bhattarai, R. Bahadur K.C., M.S. Khil, D.R. Lee and H.Y. Kim, Mater. Sci. Eng. A 426 (2006) 202-207.
- K. Elkabouss, M. Kacimi, M. Ziyad, S. Ammar and F. Bozon-Verduraz, J. Catal. 226 (2004) 16-24.
- Y. Watanabe, Y. Moriyoshi, Y. Suetsugu, T. Ikoma, T. Kasama, T. Hashimoto, H. Yamada and J. Tanaka, J. Am. Ceram. Soc. 87 (2004) 1395-1397.

- 17. J. Park, J. Alloys Compd. 492 (2010) L57-L60.
- 18. NANO Co. brochure, Jinju, Korea
- Z. Yang, S. Si, X. Zeng, C. Zhang and H. Dai, Acta Biomater. 4 (2008) 560-568.
- T. Kasuga, H. Kondo and M. Nogami, J. Crystal Growth 235 (2002) 235-240.
- M. Keshmiri, T. Troczynski and J. Non-Crystalline Solids 324 (2003) 289-294.
- 22. S. Masmoudi, A. Larbot, H. El Feki and R. Ben Amar, Desalination 190 (2006) 89-103.
- 23. Y.W. Gu, B.Y. Tay, C.S. Lim and M.S. Yong, Biomaterials 26 (2005) 6916-6923.
- T. Miyazaki, H.-M. Kim, T. Kokubo, C. Ohtsuki, H. Kato and T. Nakamura, Biomaterials 23 (2002) 827-832.
- H. Anmin, L. Tong, C. Chengkang, L. Huiqin and M. Dali, Appl. Catal. B: Environ. 63 (2006) 41-44.
- 26. S.M. Yun, K. Palanivelu, Y.H. Kim, P.H. Kang and Y.S. Lee, J. Indust. Eng. Chem. 14 (2008) 667-671.
- 27. R. Khan, S.W. Kim, T.J. Kim and C.M. Nam, Mater. Chem. Phys. 112 (2008) 167-172.
- G. Zhang, X. Zou, J. Gong, F. He, H. Zhang, Q. Zhang, Y. Liu, X. Yang and B. Hu, J. Alloys Compd. 425 (2006) 76-80.
- N. Barka, A. Assabbane, A. Nounah and Y.A. Ichou, J. Hazard. Mater. 152 (2008) 1054-1059.
- L.M. He and B.M. Tebo, Appl. Environ. Microbiol. 64 (1998) 1123-1129.