JOURNALOF

Ceramic Processing Research

Characterization of $Pb_2Ru_{2-x}Bi_xO_7$ (x = 0, 0.2, and 0.4) pyrochlore oxide cathode materials for intermediate temperature solid oxide fuel cells

Ki-Woog Song^a and Ki-Tae Lee^{a,b,*}

^aDivision of Advanced Materials Engineering, Chonbuk National University, Jeonbuk, 560-756 Korea ^bHydrogen and Fuel Cells Research Center, Chonbuk National University, Jeonbuk, 560-756 Korea

The Pb₂Ru_{2-x}Bi_xO₇ (x = 0, 0.2, and 0.4) pyrochlore oxides have been studied as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All the samples synthesized by co-precipitation method were single phase pyrochlore oxides. Pb₂Ru₂O₇ shows high electrical conductivity of over 2×10^3 S·cm⁻¹. Both electrical conductivity and thermal expansion coefficient decrease with an increase in the Bi content. Pb₂Ru_{1.8}Bi_{0.2}O₇ showed the lowest polarization resistance of 0.12 Ω ·cm² at 800 °C in an air atmosphere.

Key words: Solid oxide fuel cell, Cathode, Pyrochlore, Lead ruthenate, Oxygen reduction reaction, Thermal expansion.

Introduction

Solid oxide fuel cells (SOFCs) are attractive energy conversion devices due to their many advantages such as high energy conversion efficiency, low pollution emissions and various environmental compatibilities [1, 2]. However, the conventional operating temperature of ~1000 °C leads to performance degradation and durability problems resulted from chemical reactivity and thermal expansion mismatch. Therefore, one of the main issues in SOFCs is a reduction in the operating temperature to an intermediate temperature range (500-800 °C). However, the conventional cathode material, La_{1-x}Sr_xMnO₃ is not adequate, since the lower temperature leads to poor oxygen reduction reaction kinetics at the cathode side. To address this issue, various cathode materials have been investigated [3-5].

Recently interest has been shown in the physical properties of pyrochlore oxides [6-10], and it has been reported that the pyrochlore oxides, $A_2-_xLn_xRu_2O_7$ (A = Pb and Bi, Ln = Y, Nd, Sm, and Gd), revealed excellent electrical conductivity [6-9]. In addition, pyrochlore oxide cathode materials have demonstrated a sufficient catalytic activity for the oxygen reduction reaction [11, 12]. In accordance with these benefits, pyrochlore oxides such as bismuth ruthenates, lead ruthenates, and yttrium ruthenates have been recently investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) [11-14].

Since lead ruthenates $(Pb_2Ru_2O_7)$ can exhibit high electronic conductivity and catalytic activity for oxygen reduction [12], which is critical to improve the performance of IT-SOFCs, the solid solutions of lead ruthenates could give

these advantages. In this regards, the modified lead ruthenates by substituting bismuth for ruthenium in B site have been investigated as cathode materials for IT-SOFCs.

Experimental

The Pb₂Ru_{2-x}Bi_xO₇ ($0 \le x \le 0.6$) pyrochlore oxides were synthesized by a co-precipitation method. The required amounts of metal nitrates were dissolved in distilled water, and the metal ions were precipitated as hydroxides by adding NH₄OH as a precipitant. The precipitate was washed and dried, then fired at 900 °C for 24 h for the x = 0 and 0.2 samples, and at 850 °C for 48 h for the x = 0.4 and 0.6 samples, respectively. The Ce_{0.8}Gd_{0.2}O_{1.9} (GDC) electrolyte was prepared by the combustion method using the so called glycine nitrate process (GNP) [15].

The phase identification of the prepared powders was carried out by analyzing the X-ray diffraction data. The thermal expansion coefficients (TECs) of the sintered samples were measured by thermomechanical analysis (TMA) from room temperature to 700 °C with a heating rate of 10 K·min⁻¹. Thermogravimetric analysis (TGA) was carried out from room temperature to 1000 °C with a heating rate of 2 K·min⁻¹ in air. The electrical conductivity was measured by a four-probe DC method in the temperature range of 100-800 °C. For the electrical conductivity and TEC measurements, the samples with x = 0 and 0.2 were sintered at 900 °C for 24 h, and the x = 0.4 sample were sintered at 850 °C for 24 h. Microstructural characterization of the cathodes was carried out with a Hitachi (SN-3000) scanning electron microscope.

The electrochemical performance was evaluated by AC impedance spectroscopy with symmetrical half cells in various atmospheres. The applied frequency was in the range of 1 mHz to 100 kHz with a voltage amplitude of 20 mV. Symmetric half cells were manufactured by a screen printing

^{*}Corresponding author:

Tel:+82-63-270-2290

Fax: +82-63-270-2386

E-mail: ktlee71@jbnu.ac.kr

method, followed by firing at 900 °C for 4 h for the x = 0 and x = 0.2 compositions, and at 850 °C for the x = 0.4 composition.

Results and Discussion

The X-ray diffraction patterns of the $Pb_2Ru_{2-x}Bi_xO_7$ (x = 0, 0.2, 0.4, and 0.6) pyrochlore oxides synthesized by the co-precipitation method are shown in Fig. 1. The cubic lead ruthenate phases are confirmed for the x = 0, 0.2, and 0.4 compositions, while the x = 0.6 composition is not formed as a single phase solid solution, and contained PbBiO₂Cl as an impurity phase. Therefore, the x = 0.6 composition was excluded for the further investigation.

The thermal expansion behaviors of the $Pb_2Ru_{2-x}Bi_xO_7$ (x = 0, 0.2, and 0.4) pyrochlore oxides in the temperature range of 50-700 °C are shown in Fig. 2, and the calculated overall linear thermal expansion coefficient (TEC) values are presented in Table 1. The linear TEC of the $Pb_2Ru_{2-x}Bi_xO_7$ (x = 0, 0.2, and 0.4) pyrochlore oxides decreases with an increase in the Bi content. The TEC values of 9.9- 11.0×10^{-6} /K for the $Pb_2Ru_{2-x}Bi_xO_7$ samples well match with those of 8YSZ (10.5-11 × 10⁻⁶/K) [1].

The electrical conductivities of the $Pb_2Ru_{2-x}Bi_xO_7$ (x = 0, 0.2, and 0.4) pyrochlore oxides measured as a function of temperature from 100 to 800 °C in an air atmosphere are shown in Fig. 3. All the compositions show superior electrical conductivity values, and similar results have been also reported [12]. The electrical conductivity of all compositions was found to decrease with an increase in the Bi content, and decrease with an increase in the temperature showing metallic conducting behavior. Beyerlein *et al.* [16]

Fig. 1. X-ray diffraction patterns of the $Pb_2Ru_{2-x}Bi_xO_7$ pyrochlore oxides.

Fig. 2. Thermal expansion behavior of the $Pb_2Ru_{2-x}Bi_xO_7$ pyrochlore oxides in the temperature range of 50-700 °C.

Fig. 3. Variations of the electrical conductivity of the $Pb_2Ru_{2-x}Bi_xO_7$ pyrochlore oxides measured in an air atmosphere.

Table 1. Linear TECs of the $Pb_2Ru_{2-x}Bi_xO_7$ samples calculated from the thermal expansion curves as a function of temperature

Composition	TEC (× 10 ⁻⁶ /K)
$Pb_2Ru_2O_7$	11.0
$Pb_2Ru_{1.8}Bi_{0.2}O_7$	10.2
$Pb_2Ru_{1.6}Bi_{0.4}O_7$	9.9

have suggested that the electrical conduction in $Pb_2Ru_2O_{6.5}$ takes place via Ru-O band states in the connected network of RuO_6 octahedra. In this regard, the presence of the localized Bi^{3+} , which has no electrons to give up to the

conduction band, could be expected to cause the disconnection of the Ru-O-Ru conduction pathway. Therefore, the electrical conductivity of the $Pb_2Ru_{2-x}Bi_xO_7$ (x = 0, 0.2, and 0.4) pyrochlore oxides decreases with an increase in the Bi content. Meanwhile, in contrast with the perovskites, the conductivity values of pyrochlore oxides are much higher [17], and the highest conductivity of 3.5×10^3 S·cm⁻¹ was observed for $Pb_2Ru_2O_7$.

TGA plots of the Pb₂Ru_{2-x}Bi_xO₇ pyrochlore oxides for various x values are shown in Fig. 4. The observed weight loss during heating is due to the loss of oxygen from the lattice. In Pb₂Ru₂O₇, the Ru ions in B sites exist in the Ru⁴⁺ state [18]. The substitution of lower valence Bi³⁺ for Ru⁴⁺ leads to the formation of additional oxygen ion vacancies in order to maintain the charge neutrality in the lattice. Meanwhile, the X-ray diffraction patterns of the Pb₂Ru_{2-x}Bi_xO₇ pyrochlore oxides after TGA measurements shown in Fig. 5 also indicate no phase changes, compared with the XRD patterns of the as-prepared samples shown in Fig. 1. These results support the idea that neither phase transition nor decomposition occurs during the heating.

Surface and cross-sectional micrographs of the $Pb_2Ru_{2-x}Bi_xO_7$ pyrochlore oxide cathodes on GDC electrolyte are shown in Fig. 6. The electrodes are porous enough, and the thickness of the electrodes is approximately 15 µm. Both the x = 0 and 0.2 samples show area contact and good adhesion, and the grain size of the x = 0.2 sample is rather larger than that of the x = 0 sample. However, the x = 0.4 sample shows only point contact among particles and poor adhesion between the cathode and the electrolyte compared with the x = 0 and 0.2 samples.

The typical AC impedance spectra of the symmetrical half cells measured at 800 °C in oxygen, air, and nitrogen atmospheres are shown in Fig. 7. In all the samples, the total resistance R_{tot} (right intercept on the Z_{re} axis) increases with a decrease in the oxygen partial pressure due to the lack of reactants. The ohmic resistance R_o (left intercept on the Z_{re} axis) and polarization resistance R_p (R_{tot} - R_p) of all cathode samples at 800 °C in an air atmosphere are listed in Table 2. The cathode polarization resistance is strongly

Fig. 4. TGA plots of the $Pb_2Ru_{2-x}Bi_xO_7$ pyrochlore oxides recorded in air with a heating rate of 2 K·min⁻¹.

Fig. 5. X-ray diffraction patterns of the $Pb_2Ru_{2-x}Bi_xO_7$ pyrochlore oxides after TGA measurements.

Fig. 6. SEM micrographs of the $Pb_2Ru_{2-x}Bi_xO_7$ pyrochlore oxide cathodes on GDC electrolyte; (a), (c), and (e): cross sectional, and (b), (d), and (f): surface images.

related to the oxygen reduction reaction. The variation of R_o values corresponds to the microstructural differences as shown in Fig. 6. Area contact and better adhesion leads to a reduction in contact resistance, which can reduce the ohmic resistance. Meanwhile, the initial doping of 0.2 mol

Fig. 7. Typical AC impedance spectra of the symmetrical half cells with GDC electrolyte in air, oxygen, and nitrogen atmospheres at 800 °C.

Table 2. The ohmic resistance (R_o) and polarization resistance (R_p) of cathode samples at 800 °C in an air atmosphere

Composition	$R_o (\Omega \cdot cm^2)$	$R_p (\Omega \cdot cm^2)$
$Pb_2Ru_2O_7$	0.52	0.27
$Pb_2Ru_{1.8}Bi_{0.2}O_7$	0.48	0.12
$Pb_2Ru_{1.6}Bi_{0.4}O_7$	0.54	0.21

Bi leads to a significant decrease in the R_p and further addition to the Bi content such as x = 0.4 increases the R_p , but the R_p value of the x = 0.4 sample is lower than that of the x = 0 sample.

It has been reported that a high oxygen ion vacancy concentration in cathode materials could improve the surface oxygen exchange kinetics as well as the bulk diffusion of oxide ions [19], which leads to an increase in the electrochemical performance. Therefore, the substitution of Bi results in an enhanced electrochemical performance of the Pb₂Ru_{2-x}Bi_xO₇ pyrochlore oxide cathodes due to an increase in the amount of oxygen ion vacancies, as shown in Fig. 4. However, the x = 0.4 sample shows poorer electrochemical performance than the x = 0.2 sample despite a larger amount of oxygen ion vacancies. This is due to poorer contact and adhesion for the x = 0.4 sample, which results in the disconnection of the oxygen ion pathway.

Conclusions

33

The Pb₂Ru_{2-x}Bi_xO₇ pyrochlore oxide cathode materials were synthesized by a co-precipitation method. All samples show predominant electrical conductivities, in particular, $Pb_2Ru_2O_7$ givers over 2×10^3 S·cm⁻¹ in the entire temperature range measured. The substitution of Bi for Ru might generate supplementary oxygen ion vacancies, and the x = 0.2 and 0.4 compositions thus displayed better electrochemical performance than the x = 0 composition. The x = 0.2 composition, Pb₂Ru_{1.8}Bi_{0.2}O₇, presented the lowest polarization resistance of 0.12 Ω ·cm² at 800°C in an air atmosphere. This study implies that the Pb₂Ru_{2-x}Bi_xO₇ pyrochlore oxides are potential candidates for cathode materials for IT-SOFCs with an excellent electrical property and adequate catalytic activity for the oxygen reduction reaction. However, the poor electrode microstructure might be an issue to enhance electrochemical performance further.

Acknowledgement

This paper was supported by research funds of Chonbuk National University in 2007.

References

- 1. N.Q. Minh, J. Am. Ceram. Soc. 76 (1993) 563-588.
- 2. S.C Singhal, Solid State Ionics 135 (2000) 305-313.
- 3. S.J. Skinner, Int. J. Inorg. Mater. 3 (2001) 113-121.
- 4. K.T. Lee and A. Manthiram, Chem. Mater. 18 (2006) 1621-1626.
- 5. K.T. Lee and A. Manthiram, Solid State Ionics 178 (2007) 995-1000.
- T. Yamamoto, T. Kanno, Y. Takeda, O. Yamamoto, Y. Kawamoto and M. Takano, J. Solid State Chem. 109 (1994) 372-383.
- R. Kanno, Y. Takeda, Y. Yamamoto, Y. Kawamoto and O. Yamamoto, J. Solid State Chem. 102 (1993) 106-114.
- H. Kobayashi, R. Kanno and Y. Kawamoto, J. Solid State Chem. 114 (1995) 15-23.
- M. Yasukawa, S. Kuniyoshi and T. Kono, Solid State Commun. 126 (2003) 213-216.
- B.J. Kennedy and T. Vogt, J. Solid State Chem. 126 (1996) 261-270.
- 11. J.-M. Bae and B.C.H. Steele, J. Electroceram. 3 (1999) 37-46.
- T. Takeda, R. Kanno, Y. Kawamoto, Y. Takeda and O. Yamamoto, J. Electrochem. Soc. 147 (2000) 1730-1733.
- A. Jaiswal and E.D. Wachaman, J. Electrochem. Soc. 152 (2005) A787-A790.
- 14. Z. Zhong, Electrochem. Solid-State Lett. 9 (2006) A215-A219.
- K.T. Lee and A. Manthiram, J. Electrochem. Soc. 152 (2005) A197-A204.
- R.A. Beyerlein, H.S. Horowitz and J.M. Longo, J. Solid State Chem. 72 (1988) 2-13.
- L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin and S.R. Sehlin, Solid State Ionics 76 (1995) 259-271.
- M.A. Subramanian, G Aravamudan and GV. Subba Rao, Prog. Solid St. Chem. 15 (1983) 55-143.
- H. Bouwmeester, M. Otter and B. Boukamp, J. Solid State Electrochem. 8 (2004) 599-605.