I O U R N A L O F

Ceramic Processing Research

Thermal stability of Al₂TiO₅ ceramics for new diesel particulate filter applications-a literature review

Ik Jin Kim*

Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, 360 Haemi- Myun, Seosan City, Chungnam 356-820, Republic of Korea

The use of Al_2TiO_5 ceramics in diesel engine exhaust systems has been limited by the problem of thermal stress and thermal instability caused by the anisotropic thermal expansion between different materials. In order to avoid this problem, one of the choices is to develop low or zero-level thermal expansion materials that can be used, for example in diesel particulate filters (DPF), in which the original dimensions of the material are maintained, without being affected by thermal shock at high temperatures. For such applications, Al_2TiO_5 ceramic particulate filters must also have chemical inertness, thermal durability, high filtration efficiency, low pressure drop-, and adequate strength. In particular, DPF ideally combine low thermal expansion, low pressure drop for engine efficiency, high filtration efficiency, high strength, and low production cost. This study examined the publications and patents for thermal stability of Al_2TiO_5 ceramics with different inorganic materials having a low thermal expansion and high thermal shock resistance, suitable porosity and a narrow pore size distribution suitable for diesel exhaust filtration applications.

Key words : Al₂TiO₅, low thermal expansion, thermal shock-resistant, thermal stability, decomposition.

Introduction

Aluminum titanate (Al_2TiO_5) ceramics are excellent thermal shock-resistant materials on account of their unique combination of low thermal expansion and low Young's modulus, which, allows for applications as an insulating material in engine components such as portliners, piston bottoms, turbochargers, and DPF etc. [1, 2]. However, Al₂TiO₅ materials have a relatively low mechanical strength due to microcracks induced by the high anisotropy of the thermal expansion coefficients which are -3.0, +11.8and $+21.8 \times 10^{-6}$ /K for its three crystallographic axes, respectively [3, 4]. Furthermore, pure Al_2TiO_5 tends to decompose into Al₂O₃ and TiO₂ at temperatures ranging from 800° to 1300 °C [5, 6]. This decomposition occurs when the adjacent Al^{3+} (0.54 Å) and Ti^{4+} (0.67 Å) octahedra collapse because the lattice site occupied by the Al^{3+} ion is too large [7]. The thermal energy available from this collapse allows Al³⁺ to migrate from its position and causes structural dissolution to rutile (TiO₂) and corundum (Al₂O₃) [8]. Following decomposition, the material exhibits neither a low thermal expansion coefficient nor favorable thermal shock behavior, rendering it useless for DPF applications.

Thermal stability

The thermal stability of Al₂TiO₅ can be improved by

Fig. 1. Phase diagram of Al₂O₃-TiO₂ system by Goldberg et al [9, 10].

the formation of solid solutions with MgO, Fe₂O₃, or TiO₂, which are isomorphous with the mineral pseudobrookite, such as Fe₂TiO₅[11-15], MgTi₂O₅[16-25], Ti₃O₅(anosovite) [26] and MgAl₂O₄ (Spinel)] [27-32].

This thermodynamic stabilizing effect is related to a decrease in the decomposition temperature of isostructural compounds during cooling as shown in Fig. 2. The compounds MgTi₂O₅ and Fe₂TiO₅ decompose to MgTiO₃ + TiO₂ below 700 °C and Fe₂O₃ + TiO₂ at 565 °C, respectively, whereas Al₂TiO₅ decomposes to Al₂O₃ and TiO₂ below 1300 °C [12-15, 33]. Furthermore, the thermal stability of Al₂TiO₅ ceramics with the solid solution Fe₂TiO₅, MgTi₂O₅, or Ti₃O₅ an unsuitable after a long term durability test at the critical temperature at 1100 °C for 100-300 h [34-37].

^{*}Corresponding author:

Tel:+82-41-660-1441 Fax:+82-41-688-4143

E-mail: ijkim@hanseo.ac.kr

Fig. 2. Free energy ΔG of $Al_2 TiO_5$ from α - Al_2O_3 and TiO_2 [36, 37].

Polycrystalline Al₂TiO₅ can also be stabilized by limiting its grain growth [38-40]. Another source of stabilization is the limitation of grain growth of Al₂TiO₅ through the addition of additives such as SiO₂ [41], ZrO₂ [42, 43], mullite [33, 44-62] and ZrTiO₄ [63-68] most of which do not form a solid solution with Al₂TiO₅ but rather inhibit Al₂TiO₅ decomposition. However, the additives, SiO₂ and ZrO₂, do not have a significant effect on the thermal stability of Al₂TiO₅, even after a long annealing test at 1100 °C for 100-300 h [36]. On the other hand, the addition of mullite or ZrTiO₄ not only restrains decomposition but also increases the thermal stability at 1100 °C [15, 69].

Mullite, a second phase, has been used to reduce microcracking as well as grain growth of the Al₂TiO₅ phase and eventually improve the mechanical behavior in the temperature range 1300 and 1450 °C, according to a compressive mechanical test that was correlated to the microstructure. The positive effects of the thermal treatment and thermal expansion behavior are due to the micro-crack system of Al₂TiO₅ ceramics at grain boundaries as shown in Fig. 3. It appears that the high thermal expansion of a Al_2TiO_5 single crystal (see Fig. 3, above, 9.70×10^{-6} /K) and low thermal expansion of sintered Al₂TiO₅ ceramics (below) are due to the effects of grain boundary micro-cracking caused by the large thermal expansion anisotropy of the crystal axes of the Al₂TiO₅ phase. During the reheating run, the individual crystallites expanded at low temperature. Therefore, the solid volume of the specimen expands into micro-cracks, where as the macroscopic dimensions remained relatively unchanged. As a result, the material expanded slightly up to 1000 °C and the micro-cracks closed at higher temperatures. This result is closely related to thermal expansion curves that were relatively steep [6, 35-37].

Al₂TiO₅ - mullite (ATM) ceramics

Most Al_2TiO_5 - mullite (ATM) ceramics used in DPF applications are prepared by an extrusion method after a sintering reaction from the individual minerals and after adjusting the main composition of $Al_2O_3/TiO_2/SiO_2$ to form Al_2TiO_5 -mullite and a glass phase such as; kaolin [70], feldspar [71-79], SrO feldspar [45, 49, 53, 54],

Fig. 3. Thermal expansion of single crystal (above) and sintered Al_2TiO_5 (below) and microstructure of Al_2TiO_5 ceramics.

amorphous SiO₂ [80], boehmit [57], inorganic micro balloons [56], SE₂O₃ (SE₂O₃: 0.1-10 wt%, SE : Y, Yb, Dy, Ho, Tm, Lu) [81], cordierite-spinel [57, 82], spinel [83, 84], Na_{0.6}K_{0.4}AlSi₃O₈ [85, 86], and Al₂O₃ [87] etc..

All ATM composites exhibit reduced low thermal expansion coefficients with increasing Al₂TiO₅ content accompanied by a pronounced large hysteresis area, as shown in Fig. 4. The ATM materials showed low thermal expansion up to 700 °C. However, the temperature hysteresis increased when the temperature was further increased. This was attributed to the onset of mechanical healing of the micro cracks as the temperature was raised to more than 900 °C, and the re-opening or refracturing of cracks that occurred when cooled to < 730 °C. Even at 1000 °C the slope of the ATM1 materials sintered at 1600 °C remained flat in terms of zero level thermal expansion during heating, which suggests that a significant proportion of the micro-cracks remain open (see Fig. 4). The thermal expansion coefficient of ATM materials sintered at 1600 °C for 6 h were 1.09×10^{-6} /K for ATM1, $2.50 \times$ 10⁻⁶/K for ATM2, 4.06×10^{-6} /K for ATM3 and $5.48 \times$ 10^{-6} /K for ATM5 at temperatures that increased from 20 to 1000 °C [69].

Fig. 4. Thermal expansion curves of AT and ATM ceramics sintered at 1600 $^{\circ}\mathrm{C}$ for 6 h.

The largest increase in strength occurred with the synthesized Al₂TiO₅ powder, particularly using Al₂O₃, MgO or ZrO_2 . The increase in mechanical strength reported for this material was linked microstructually to the observation of fine Al₂O₃, MgAl₂O₄, or ZrO₂ particles at the grain boundaries [37]. Such a distribution of fine particles at the grain boundaries would prevent grain growth and reduce microcracking, thereby increasing the strength [31, 33]. SiO₂ additions improve the strength of reaction-sintered material to a limitied amount of 3%. This was attributed to the formation of a grain boundary liquid phase during sintering [7]. Pena et al. [90] examined the properties of an Al₂TiO₅-mullite-ZrO₂ mixture and obtained a strength of 30 MPa, which represents a 10-fold improvement over their pure Al₂TiO₅ material. Yano et al. [91] reported a mechanical strength of approximately 100 MPa for material containing 25 vol% mullite, which coincided with the point at which decomposition had been completely controlled. Morishima et al. [92] reported a strength of 70 MPa for an Al₂TiO₅-mullite composite material containing 91 vol% Al₂TiO₅, but this material did not show any retention of strength.

The thermal shock resistance of Al₂TiO₅ ceramics is influenced not only by characteristics such as the thermal expansion coefficient, thermal conductivity, strength, modulus of elasticity, Poisson's ratio etc. of the material but also by the size and profile of the product made from them as well as from the heating and cooling states, and heat transfer speed [93]. Such effects and the particle size often govern the sensitivity of the physical properties, including the coefficient of thermal expansion, porosity, or pore size, low firing temperature, which are undesirable for DPF manufacture. In addition, the desired properties for use as a DPF use are not expected to be achieved. Furthermore, the phase stability and physical/mechanical properties make Al₂TiO₅ based materials very difficult to control for the complex interrelationships between microcracking.

In general, thermal shock resistance is a property that is difficult to quantify, and it is usually expressed in terms of a number of empirical resistance parameters, which are dependent on the conditions imposed. However, an examination of strength retention after quenching can be performed. For high temperature applications, long-annealing thermal durability, cycle thermal stability and residual mechanical properties are very important if these materials are to be used between 1000 °C and 1300 °C. Attempts to improve the thermal durability of Al₂TiO₅ between 750° and 1400 °C are still under investigation. In particular, Al₂TiO₅-mullite (ATM) ceramics have a very high volumetric heat capacity (approximately 3.9 to 4.0 J cm⁻³⁻¹ for fully dense ATM at 800 K) in combination with a low CTE. In addition, ATM ceramics have excellent chemical durability and high melting point. Table 1 summarizes the phase compositions, thermal and physical properties of ATM materials (1600°C/2h) after various heat treatments.

However, in the manufacture of ATM ceramics involving sintering temperatures greater than 1600 °C, such high heating temperatures add to the manufacturing and final product cost. Furthermore, many methods for making Al_2TiO_5 -based ceramics require the use of pre-reacted Al_2TiO_5 and/or mullite powders, which also increase the manufacturing cost. Moreover, the desired properties for DPF use are not expected to be achieved.

Some approaches have employed to reduce the sintering temperature. These include the addition of chemical components, such as inorganic micro balloons (1450-1600 °C) [56], an amorphous phase (1375-1450 °C) [80], SE₂Ti₂ (1400-1650 °C) [81], anatase and beohmite (1375-1500 °C) [57, 94-97] etc. In general, raw materials, such as alkali feldspar SrO feldspar, kaolin, silicate, aluminosilicate, magnesium silicate, hematite, rutile, SE₂O₃, and inorganic micro balloons etc. are added to form a solid solution Al₂TiO₅-mullite or glass phase based ceramics by reaction sintering.

Al₂TiO₅-ZrTiO₄ (ATZ) ceramics

Al₂TiO₅-ZrTiO₄ (ATZ) ceramics also have low thermal expansion (0.1-1.3 × 10⁻⁶K⁻¹), and a high melting temperature (> 1500 °C) [63, 64, 98]. Al₂TiO₅-ZrTiO₄ (ZAT) based ceramics with increasing Al₂TiO₅ content exhibit lower thermal expansion coefficients and a pronounced large hysteresis area. The composition is preferably made by forming a mixture of 50-90 vol.% Al₂TiO₅ materials which show a negative and ultra low thermal expansion up to 700-1000 °C. However, when the temperature is increased further, the thermal expansion and hysteresis

Table 1. The Phase Compositions, Thermal and Physical Properties of ATM Materials (1600 °C for 2 h)

Material	Mullite content [%]	Phase		Sinter density [g/cm ³]			Thermal expansion coefficient [10 ⁻⁶ K ⁻¹]		Young's modulus [GPa]		
		1600/6 h	1100/100 h	1600/6 h	1100/100 h	**cycles	1600/6 h	1100/100 h	1600/6h	1100/100h	**cycles
AT	0	AT	A+T	3.1	-	-	0.68	6.15	20	-	-
ATM1	10	*AT+M	*AT+M	3.3	3.71	3.63	1.09	1.49	23	38.9	35.0
ATM2	20	*AT+M	*AT+M	3.5	3.57	3.53	2.50	3.03	40	44.7	41.7
ATM3	30	*AT+M	*AT+M	3.41	3.46	3.40	4.06	3.59	65	70.9	67.4
ATM5	50	*AT+M	*AT+M	3.4	3.50	3.30	5.48	5.36	80	78.8	78.5

*AT : Al₂TiO₅, M : Mullite, A : Al₂O₃, T : TiO₂

**cycles : 750-1400-750 °C for 23 cycles

Fig. 5. Thermal expansion curves of ZAT ceramics sintered at 1500 °C and 1600 °C for 2 h.

increased relatively, as shown in Fig. 5 (see Table 2). This was attributed to the onset of mechanical healing of micro-cracks with heating to > 600 °C and their reopening or refracturing that occurs when cooled to below 730 °C. However, the phase stability of the Al_2TiO_5 phase in the ZAT matrix after a long term durability test at 1100 °C and a cyclic thermal shock test between 750-1400-750 °C was insufficient for DPF applications as shown in Table 2 [64-66].

Therefore, the phase stability of Al₂TiO₅ at high temperature should be improved by a thermodynamic effect with the formation of solid solutions and also kinetically with the limitation of grain growth of Al₂TiO₅ in the matrix. Otherwise, Al₂TiO₅ ceramics no longer exhibits either a low thermal expansion coefficient or favorable thermal shock behavior, rendering them useless for DPF applications. Therefore, there is a need for new stabilized Al₂TiO₅ - ZrTiO₄ (ZAT) based ceramics that can be manufactured at lower sintering temperatures with properties that are useful for high temperature filtration applications. In particular, it is important to prepare low thermal expansion ceramics with the appropriate microstructures composed essentially of Al₂O₃, TiO₂, SiO₂, and ZrO₂ where the crystalline phases of the fired product consist primarily of Al₂TiO₅ and ZrTiO₄, or a solid solution such as mullite and glass phase.

In order for a solid solution to form, the solute element must have approximately the same ionic radius and similar (\pm valence) atomic charge as the element that it is replacing (see Table 3). Similar crystal structures are also helpful but not always necessary. Fe³⁺ with a radius of 0.64 Å, readily forms a solid solution with the Al³⁺ in Al₂TiO₅, which has a radius of 0.54 Å, Therefore, other elements such as Cr³⁺(0.69 Å) and Mg²⁺ (0.72 Å) can also form compatible solutions with Al³⁺. A similar case could be

Table 2. Phase Compositions, Thermal and Physical Properties of ZAT Materials (1600 °C/2 h)

Materials	Al ₂ TiO ₅ contents [%]	Phases		Sinter density	Thermal expansion coef- ficient $\alpha_{rever} = [10^{-6}K^{-1}]$	Decomposition content of Al_2TiO_5 after thermal shock test [%]		
		1600/2h	1100/100h	[g/ciii]	Incient 025-1350 [10 K]	1100/100h	750-1400-750 °C for 23 cycles	
AT	100	AT	AT+A+T	3.68 (93.2)	0.68	90	70	
ZAT5	50	AT +h-ZT	AT +h- ZT+T+A	4.40 (96.3)	1.3	20	10	
ZAT7	70	AT+h-ZT	AT +h-ZT	4.09 (97.3)	1.2	10.5	15	
ZAT8	80	AT+h-ZT	AT +h-ZT+T	3.95 (98.5)	0.9	65.0	15	
ZAT9	90	AT+h-ZT	AT +h- ZT+T+A	3.84 (98.1)	0.2	70.2	20	

AT : Al₂TiO₅, h-ZT : High-ZrTiO₄, A : Al₂O₃, T : TiO₂

(): Relative density [%]

Table 3. Ionic Radius Condition for Al2TiO5, A2BO5 Solid Solutions

Ion A, Al ⁺³ (0.54 Å)	Size difference/ Solid solution		Ion B, Ti ⁴⁺ (0.61 Å)		Size difference/ Solid solution
Cu ⁺³ (0.54 Å)			Ge ⁴⁺ (0.53 Å)		Al ₂ Ti _{1-y} Ge _y O ₅
Co ⁺³ (0.55 Å)			Mn ⁴⁺ (0.53 Å)		
Ni ⁺³ (0.56 Å)	3.57		Ti ⁴⁺ (0.61 Å)		Ti ₃ O ₅
Cr^{+3} (0.62 Å)		Al _{2-x} Cr _x TiO ₅	Mo ⁴⁺ (0.65 Å)		
Ga ⁺³ (0.62 Å)	12.9	Al 2-x GxTiO5	W ⁴⁺ (0.69 Å)		
Fe ⁺³ (0.65 Å)	16.9	Al _{2-y} Fe _y Ti ₁ .Ge _y O5	Sn ⁴⁺ (0.69 Å)		
Ti ⁺³ (0.67 Å)		Ti ₃ O ₅	${ m Hf}^{4+}(0.71~{ m \AA})$		
Mo ⁺³ (0.69 Å)			Zr^{4+} (0.72 Å)		$Al_2Ti_{1-x}Zr_xO_5$
Sc ⁺³ (0.75 Å)	28.0		Mg^{2+} (0.72 Å)	25	Al _{2(1-x)} Mg _x Ti _{1-y+x} Ge _y O ₅ (GeO ₂ , MgO)
Sb ⁺³ (0.76 Å)			Fe ⁴⁺ (0.65 Å)		$(Mg_{0.5}Fe_{0.5})Ti_2O_5$
Yb ⁺³ (0.87 Å)			Ce^{4+} (0.87 Å)		
Mg^{2+} (0.72 Å)	25	$Mg_{x}Al_{2(1-x)}Ti_{(1+x)}O_{5}$	Th ⁴⁺ (0.94 Å)		

made for Si⁴⁺, Zr⁴⁺, etc., substituting for Ti⁴⁺, It is believed that a small amount of oxide element may diffuse between the phases during sintering/calcining, resulting in a more complex solid solution than intended for the stability of Al₂TiO₅-ZrTiO₄ (ZAT) composites.

The addition of excess starting oxides can also give the desired phase assemblages and subsequent beneficial properties. Small quantities of additives, such as Fe₂O₃ and MgO, can be added as a component to Al₂TiO₅ in any of the routes described above. Such additives maintain the properties of Al₂TiO₅, and it was found that 1 to 5 wt% addition of, for example, Fe₂O₃, MgO, or mixtures thereof are advantageous which can be responsible for its phase stability and controlled microcracking behavior due to the decrease in crystal anisotropy. In addition, during calcining or sintering, cation diffusion between components can occur such that a small amount of ZrO₂ may go into solution Al₂Ti_{1-x} Zr_xO₅ imparting beneficial properties.

Al₂TiO₅-ZrTiO₄ -mullite (ATZM) ceramics

An excellent thermal shock-resistant material based on Al₂TiO₅-ZrTiO4-mullite or other oxide composites of various compositions can be fabricated by a sintering reaction from the individual oxide sources and adjusting the $Al_2O_3/TiO_2/SiO_2$ and ZrO_2 ratios. Fig. 6 shows the solid state relationships in the plane Al₂O₃-TiO₂-ZrO₂-SiO₂ system. The diagrammatic representation of the solid statecompatibility relationships shows the part of the system where Al_2O_3 is one of the phases. $A_3S_2 = Al_6Si_2O_{13}$ (mullite); $AT = Al_2TiO_5$; $ZT = ZrTiO_4$; $A = Al_2O_3$; Z = ZrO_2 ; $S = SiO_2$; $ZS = ZrSiO_4$. The composition can be made preferably by forming a mixture of the equivalent of 50-90 vol.% Al₂TiO₅ or a solid solution with a substantial amount of Al₂TiO₅ in the solid solution, and 10-40 vol.% of ZrTiO₄ followed by heating the mixture to 1250 °C or higher [85, 99, 100].

The presence of 10-20 wt% $ZrSiO_4$ helps densify these materials and increase the temperature for Al_2TiO_5

TiO₂

80

60

20

40

Fig. 6. Solid state relationship of Al₂O₃-TiO₂-ZrO₂-SiO₂ system.

formation [101]. During the reaction-sintering process, ZrSiO₄ decomposes to form ZrTiO₄ as a transitory phase. Temperatures > 1450 °C are needed to dissociate the compound yielding Al₂TiO₅, ZrTiO₄, mullite and ZrO₂. These composites can be obtained at 1450 °C. The temperature should not be increased to 1500 °C because this produces an appreciable amount of glass phase accompanied by the disappearance of mullite.

The inorganic micro balloons containing 63.2 wt%SiO₂ and 34.0 wt% Al₂O₃ can be reacted with an aluminum source, zirconia source, and titanium source to form Al₂TiO₅, ZrTiO₄, and mullite-based porous ceramics at low sintering temperatures, 1350-1500 °C. If the melting point of inorganic balloons is low, there is a tendency for the micro balloons to melt at 1100-1300 °C, allowing the pores to contact before the Al₂TiO₅ is formed. Fig. 7 also shows the solid state relationship of Al₂O₃-TiO₂-ZrO₂-SiO₂ system.

Raw materials for new DPF ceramics

ZAT-forming raw materials are (1) oxide sources that react to form ZrTiO₄ and Mg or Fe stabilized Al₂TiO₅ phases, and/or (2) partially or completely pre-reacted ZrTiO₄ and Mg or Fe stabilized Al₂TiO₅ powders. The alumina source is a powder, that when heated to a sufficiently high temperature in the absence of other raw materials, yields substantially pure aluminum oxide, that includes alpha-alumina, a transition alumina such as y-alumina or rho-alumina, boehmite, aluminum hydroxide, and mixtures thereof. The morphology of alumina has to be tabular and the particle size should be sufficiently large for microcracking to be induced in the final structure. A particle size of between 10-25 micrometres is suitable. Hematite is recommended as a source of the iron oxide. A suitable titania source is rutile and anatase with a particle size of approximately 7-15 micrometres. The silica sources can include amorphous SiO₂ such as cristobalite, Kaolin (SiO₂ 46%, Al₂O₃ 39%, Fe₂O3 0.8% etc.), and inorganic micro balloons and the ZrO2 sources can include tetragonal

Fig. 7. Solid state relationship in the phase of the Al_2O_3 -TiO₂-ZrO₂-SiO₂ system.

and cubic forms stabilized by the addition of small amounts of CaO, Y₂O₃, or MgO. The silica and zirconia sources also include ZrSiO₄ (Zircon) which has 45.02 wt% of Zr and 17.67 wt% of Si. However, all material compositions, which are protected by intellectual property should not be considered for the current DPF products based on Al₂TiO₅ and the mullite phase. Therefore a thorough patent literature survey ahould be performed. In particular, the survey ahould examine the most important requirements related to Al₂TiO₅ ceramics with different inorganic materials with a low thermal expansion and high thermal shock resistance, suitable porosity and a narrow pore size distribution for diesel exhaust filtration applications under consideration of the following points; maximum operation temperature (1100-1200 °C), long durability of microstructure, CTE (WAK): $< 1.5 \times 10^{-6} \text{K}^{-1}$, good mechanical strength (50-70 MPa), excellent chemical resistance, and excellent thermal shock resistance ($\Delta T = > 1,000$ °C) etc.

Conclusions

Because the near or zero thermal expansion of anisotropic Al_2TiO_5 materials minimizes thermal stress in a body, there has been considerable effort in developing low-expansion materials for severe thermal shock applications which is the rational approach to the thermal stabilization of composites. Pure Al_2TiO_5 tends to decompose reversibly into Al_2O_3 and TiO_2 at temperatures ranging from 800 to 1300 °C during cooling below the equilibrium temperature of 1280 °C. After decomposition, the material no longer exhibits either a low thermal expansion coefficient or favorable thermal shock behavior. A literature survey of Al_2TiO_5 -mullite and Al_2TiO_5 -ZrTiO₄ ceramics with low thermal expansion and good thermal shock resistance, suitable porosity and a narrow pore size distribution for diesel exhaust filtration applications was perfomed.

Porous cordierite (2MgO·2Al₂O₃·5SiO₂) ceramics have long been used as the cost-effective materials of choice for high temperature filtering applications, such as flowthrough and wall-flow filters, on account of their combination of good thermal shock resistance, filtration efficiency, and durability under most operating conditions. However, under certain circumstances cordierite filters are susceptible to damage and some have even failed catastrophically. Occasional thermal runaway occurs during uncontrolled regenerations resulting in localized cordierite phase melting. Another factor contributing to failure occurs when metallic impurities from the engine oil, catalytic additives or corroded metal from the exhaust port liners are introduced into the filter during operation. Typically, at temperatures exceeding 1300 °C, these metals form oxides that react with the cordierite structure. Evidence of the failed material is usually small holes on the filter where the metal initially deposits and reacts causing corrosion and melting of the material.

Recently, silicon carbide (SiC) has been used as an alternative to cordierite in the fabrication of diesel

particulate filters. However, SiC is costly and must be segmented due to its inherent high coefficient of thermal expansion (CTE) and poor thermal shock resistance. Therefore, there is a need for a ceramic that is suitable for high temperature applications with all the advantages of cordierite but without the disadvantages. Furthermore, new materials based on A1₂TiO₅-ZrTiO₄-mullite (ATZM) or A1₂TiO₅-ZrTiO₄-ZrO₂ (ATZZ) composition for DPF must not infringe existing patents.

Acknowledgements

This study was supported by Mann & Hummel GMBH in Stuttgart, Germany. The author whishes to thank Prof. Dr. Ludwig J. Gauckler at Nichtmetallische Werkstoffe, ETH, Swiss Federal Institute of Technology Zurich, Swiss for his help in hardness discussions during this study.

References

- H. Heinrich, M. Langer, and J. E. Siebels, "Experimental results with ceramic components in passenger-car diesel engines" (Volkswagen AG Research Division D-3180 Wolfsburg, Germany, (1990).
- 2. E. Gugel, Keramische Zeitschrift, Vol. 36 No. 9 (1984) 477-479.
- B. Morosin and R. W. Lynch, Acta Cryst., B28 (1972) 1040-1046.
- Y. Ohya and Z. Nakagawa, J. Am. Ceram. Soc., 70[8] (1987) C184-186.
- E. Kato, K. Daimon and I. Takahashi, J. Am. Ceram. Soc., 63, (1980) 355-356.
- 6. R.E. Wright, J. Am. Ceram. Soc., 5[5] (1972) 54-56.
- S.A. Babayan, L.A. Kostanyan and Geodakyan, J.A., Arm. Khim. Zh. 26 (1973) 549-554.
- H.A. J. Thomas and R. Sterens, Br. Ceram. Trans. J. 88 (1989) 144-151.
- 9. A.M. Lejus, D. Goldberg and A. Revcolevschi, C.R. Seances Acad. Sci., Ser. C, 263[20] (1966) 1223-1226.
- D. Goldberg, Rev. Int. Hautes Temp. Refract., 5[3] (1968) 181-194.
- 11. Ch. Han and D. Selb, Sprechsaal 118, 12 (1985) 1157-1166.
- B. Freudenberg and A. Mocellin, J. Am. Ceram. Soc. 70[1] (1987) 33-38.
- 13. US 6,849,181 B2, Mullite-Aluminium Titanate Diesel Exhaust Filter.
- 14. US 6,511,628 B2, Method for controlling the firing of ceramics.
- Ik Jin Kim, Dieser. RWTH Aachen, thermal shock resistant and mechanical properties of aluminum titanate-mullite and powder preparation by sol-gel process (1991).
- V. Buscaglia and P Nanni, J. Am. Ceram. Soc. 81[10] (1998) 2645-2653.
- 17. J.K. Kuszyk and R.G. Bradt, J. Am. Ceram. Soc. 56[8] (1973) 420-423.
- US2007224110A, Magnesium Aluminum Titanate Crystal Structure and Method for Producing Same.
- JP 2007 1055622A2, Honeycomb Fliter for Cleaning Exhaust Gas and Method for Manufacturing the Same.
- 20. EP 1 741 681 A1, Magnesium aluminum titanate crystal structure and method for producing same.
- 21. EP 1 645 319 A1, Honeycomb filter for clarifying exhaust gas and method for manufacture thereof.

- 22. EP 1 652 830 A1, Honeycomb Carrier for Exhaust Gas Clarification Catalyst and Method for Production thereof.
- 23. CA 2 325 172 A1, Process for Preparing Sintered Body of Aluminium Titanate.
- 24. EP 0 210 813, Aluminium titanate-mullite base ceramics.
- 25. JP 300 875 7 A2, Aluminium titanate-mullite based ceramic body.
- 26. W.R. Buessem and N.R. Thielke and R.V. Sarakauskas, Ceram. Age 60 (1952) 38-40.
- 27. EP 1 666 119 A1, Honeycomb Filter for Calrifying Exhaust Gas and Method for Manufacture thereof.
- EP 1 514 857 A1, Method for Processing Aluminum Titanate Sintered Compact.
- 29. EP 1 559 696 A1, Method for Producing Aluminum Titanate Sintered Product.
- 30. EP 1 156 023 B1, Processing for Preparing Sintered Body of Aluminum Titanate.
- JP 2006 096 634, Aluminum Tiatanate-based porous ceramic body.
- 32. EP 1 666 118 A1, Ceramic honeycomb filter and method of manufacturing the same.
- V. Buscaglia, M. Alvazzi Delfrate, M. Leoni, C. Bottino and P. Nanni, Jornal of Materials Science 31 (1996) 1715-1724.
- H.J. Pohlmann, K. Schricker and K.H. Scheuller, Ber. Dt. Keram. Gas. 52, 6 (1975) 179-183.
- 35. B. Freudenberg, H.A. Linder, E. Gugel and P. Thometzek, ECRS, 6 (1989) 18-23
- I.J. Kim and H.S. Kwak, Canadian Metallugical Quarterly, 39[4] (2000) 387-395.
- O. Knacke, O. Kubaschewski and K. Hasselmann, Thermochemical Properties of Inorganic Substance, Spring Verlag, Verlag Stahleisen m.b.H. Duesseildorf (1991) P. 47, 70, 2097.
- H.J. Pohlmann, K. Schricker and K.H. Scheuller, Ber. Dt. Keram. Gas. 52[6] (1975) 179-183.
- H.C. Kim, K.S. Lee, O.S. Kweon, Ch. G. Aneziris and I.J. Kim, Journal of the European ceramics Society 27 (2007) 581-584.
- J.J. Melendez-Martinez, M. Jimenez-Melendo, A. Dominguez-Rodringuez, and G. Woetting, Journal of the European ceramics Society 21 (2001) 63-70.
- I.J. Kim, F. Zhao, J. Gong, K.S. Lee, I.S. Han and Woo Sang Kuk, Journal of Ceramic Processing Research, 14[2] (2003) 71-79.
- I.J. Kim and K.S. Lee, Journal of Ceramic Processing Research, I[4] (2003) 202-209.
- T. Staudt, Dieser. RWTH Aachen, Eigenschaften, Korrosionverhalten und moegliche Anwendungen von geschmolzem Aluminiumtitanat.
- 44. I.J. Kim and G. Cao, Journal of the European Ceramic Society, 22 (2002) 2627-2632.
- US 2007/0006561 A1, Aluminium Titanate ceramic Forming Batch Mixtures and Green Bodies Including Pore Former Combination and Methods of Manufacturing and Firing Same.
- 45. KR10-2007-0012506, US 60/564,081, PCT/US2005/009596, Aluminium Titanate-Based Ceramic and Product method.
- 46. US 2007/0214759 A1, Narrow pore size distribution aluminium tatanta body and method for making same.
- 47. US 2006/0021308 A1, Mullite-Aluminium Titanate body and method for making same.
- 48. US 2006/0021309 A1, Narrow pore size distribution aluminium tatanta body and method for making same.
- 49. US 7,001,861 B2, Aluminium Titanate-Based Ceramic Article.
- 50. US 7,071,135 B2, Ceramic Body Based on Aluminium Titanate and Including a Glass Phase.
- 51. US 2006/281,627 A1, Aluminum Titanate Ceramic Articles

and Method of Making Same.

- 52. US. 6,849,181 B2, Mullite-Aluminum Titanate Diesel Exhaust Filter.
- 53. US 6,677,261 B1, Alumina-Bound High Strength Ceramic Honeycomb.
- 54. US. 6,942,713 B2, Ceramic Body Based on Aluminum Titanate.
- 55. US 2007/0063398 A1, Method of manufacturing porous body.
- 56. US2007/006 3397,A1, Method of manufacturing porous body.
- 57. DE 10 2006 000 291 A1, Verfahren zur Herstellung einer keramischen Structur und keramische Strukur.
- 58. EP 0 724 126 A2, Honeycomb regenerator.
- DE 42 32 640 C3, Alumnium Tiatanat-Keramik und Verfahren zu Ihrer Hestellung.
- 60. EP 0 210 813, Aluminium titanate-mullite base ceramics.
- 61. US 5 153 153, Sintered Ceramic Materials based on Aluminium Titanate, A Process for their Production and Their USE.
- 62. DE 37 07 396 C2, Verfahen zur Herstellung enies keramischen Werkstoffes und dessen Verwendung.
- I.J. Kim and G. Cao, Key Engineering Materials Vols, 224-226 (2002) 819-824.
- EP 0278 456 A2, "Low thermal expansion ZrTiO₄-Al₂TiO₅-ZrO₂ ccomposites".
- 65. KR 0 486 121, A method for producing Aluminium titanate-Zirconium Titanate ceramics with low expansion behavior.
- I.J. Kim, K.S. Lee and G. CaO, Latiamerican Journal of Metallurgy and Materials, 20. 2 (2000) 59-67.
- H.C. Kim, K.S. Lee, O.S. Kweon, Ch. G. Aneziris and I.J. Kim, Journal of the European ceramics Society 27 (2007) 581-584.
- 68. H.C. Kim, K.S. Lee, Ch. G. Aneziris and I.J. Kim, Key Engineering Materials Vols, (2005), 2448-2450.
- I.J. Kim and L.J. Gauckler, Journal of Ceramic Processing Research, 9[3] (2008) 240-245.
- 70. US 2006/0213165 A1, Ceramic filter.
- 71. JP 2007 1055622A2, Honeycomb Fliter for Cleaning Exhaust Gas and Method for Manufacturing the Same.
- 72. US 2007059484A, Honeycomb Fliter for Clarifying Exhaust Gas and Method for Manufacture thereof.
- 73. US 7 011 788 B2, Method for Producing Aluminum Titanate sintered object.
- 74. EP 1 645 319 A1, Honeycomb filter for clarifying exhaust gas and method for manufacture thereof.
- 75. EP 1 652 830 A1, Honeycomb Carrier for Exhaust Gas Clarification Catalyst and Method for Production thereof.
- 76. EP 1 514 857 A1, Method for Processing Aluminum Titanate Sintered Compact.
- 77. EP 1 338 581 A1, Method for Producing Aluminum Titanate Sintered Object.
- 78. WO 2007/ 015 495 A1, Process for producing ceramic honeycomb structure by particle size.
- 79. DE 42 28 527 C2, Alumnium Tiatanat-Keramik und Verfahren zur Herstellung derselben.
- WO 2007/ 015 495 AI, Process for producing ceramic honeycomb structure by particle size.
- DE 42 28 527 C2, Alumnium Tiatanat-Keramik und Verfahren zur Herstellung derselben.
- EP 1 666 436 A1, Ceramic honeycomb structure and ceramic body used for extrusion-molding the structure.
- 83. US 6.403 019 B1, Process for Preparing Sintered Body of Aluminium Titanate.
- 84. CA 2 325 172 A1, Process for Preparing Sintered Body of Aluminium Titanate.
- JP 300 875 7 A2, Aluminium titanate-mullite based ceramic body.

- JP 2006 096 634, Aluminum Tiatanate-based porous ceramic body.
- 87. EP 0586102 A1, High temperature ceramic filter.
- H. A. J. Thomas and R. Sterens, Br. Ceram. Trans. J. 88 (1989) 184-190.
- T. S. And D. S. Perera, Journal of Materials Science, 33 (1998), 995-1001
- P. Pena, S. De Aza, and Moya, J. Mars. Sci. Letters, 6. (1988) 389-395.
- T. Yano, N. Nagai, M. Kiyohara, K. Saito, and N. Otsuka, Journal of Ceram. Soc. Japan, 92 (1986) 44-50.
- 92. H. Morishima, Z. Kato, K. Saito, T. Yano and N. Ootsuka, J. Mater. Sci. Letters 6 (1987) 389-390.
- 93. WO 2007/ 015 495 A1 Process for producing ceramic

honeycomb structure by particle size.

- 94. S. DeAza, C. Richmond and J. White, Trans. J. Br. Ceram. Soc., 73[4] (1974) 109-116.
- 95. DE 4232640C3, Alumnium Tiatanat-Keramik und Verfahren zu Ihrer Hestellung.
- 96. DE 42 28 527 C2, DE 42 28 527 C2 Alumnium Tiatanat-Keramik und Verfahren zur Herstellung derselben.
- 97. DE 10 2006 000 291 A1, Verfahren zur Herstellung einer keramischen Structur und keramische Strukur.
- 98. Fred. J.Parke, J Am. Ceram. Soc. 73[4] (1990) 929-932.
- 99. P. Pena and S. DeAza, Ceramica (Florence), 30[1] 1-6 (1977).
- 100. P. Pena and S. DeAza, Sci. Ceram., 9 247-255 (1977).
- H. Wohlfromm, J. S. Moya, P. Pena, Journal of Materials Science, 25 (1990) 3753-3764.