JOURNALOF

Ceramic Processing Research

Influence of additives on the morphology of α -Al₂O₃ platelets synthesized in a molten salt

Dai Yue-qin, Zhu Li-hui* and Huang Qing-wei

Shanghai Key Laboratory of Modern Metallurgy & Materials Processing, P. O. Box 15#, Shanghai University, 149 Yanchang Road, Shanghai 200072, People's Republic of China

Trisodium phosphate (Na₃PO₄·12H₂O) and titanyl sulfate (TiOSO₄) were chosen to study the influence of additives on the morphology of α -Al₂O₃ platelets synthesized by molten salt synthesis. When Na₃PO₄·12H₂O is added, α -Al₂O₃ platelets become thin and quite irregular. Besides, less overlapped particles can be found. When TiOSO₄ is added, regular hexagonal α -Al₂O₃ platelets with a decreased size and increased thickness are obtained. When 0.51 wt% Na₃PO₄·12H₂O and 12 wt% TiOSO₄ are added, α -Al₂O₃ platelets with a regular shape and an aspect ratio of 12.5 are developed. The mechanism of Na₃PO₄·12H₂O and TiOSO₄ on the morphology of α -Al₂O₃ platelets is also discussed in this paper.

Key words: Platelets, α-Al₂O₃, Molten salt synthesis, Additives.

Introduction

Plate-like α -Al₂O₃ powders are applied widely since they have excellent properties, which derive from α -Al₂O₃ and the special two-dimensional structure. α -Al₂O₃ platelets can be added into ceramics as seeds to induce abnormal grain growth, leading to a significant improvement of fracture toughness[1]. When suitable plate-like α -Al₂O₃ are chosen as templates, textured Al₂O₃ ceramics with anisotropic properties can be prepared by templated grain growth [2]. Owing to their high aspect ratio and heat conductivity, α -Al₂O₃ platelets can also be used as fillers and added into plastics to improve their thermal conductivity [3]. α -Al₂O₃ platelets with different shapes are required in various applications, so it is of great importance to control the morphology.

Molten salt synthesis (MSS) is often used to synthesize α -Al₂O₃ platelets [4-11]. During MSS, the morphology can be easily changed by many factors, such as the molten salts used [4], precursors [8, 9], additives [8, 12-15], crystal seeds [7, 9-10], calcination temperature and time [11] etc. Additives are best to control the morphology of plate-like α -Al₂O₃ during MSS. Plate-like α -Al₂O₃ can be synthesized at a lower temperature when some additives such as LiF, ZnF₂, AlF₃ and TiO₂ are added [12-14]. Besides, Hashimoto and Yamaguchi's experimental results show that the morphology of α -Al₂O₃ platelets can be marked changed when only a small amount of Cu²⁺, Co²⁺, Ce⁴⁺ and F⁻ are added [15]. Therefore, it is necessary to study the effect of additives on the morphology of α -Al₂O₃ platelets.

Phosphate is often used as an additive owing to its high ion strength and charge density. α -Al₂O₃ flakes are easily obtained by the addition of a phosphate, and the morphology of α -Al₂O₃ platelets is related to the amount of the phosphate addition [16, 17]. Plate-like α -Al₂O₃ particles can not be obtained when less than 0.1 wt% phosphate (in terms of oxide relative to the weight of the Al_2O_3 [17]) is added, but as the amount increases to 2 wt%, the growth of the thickness of platelets can not be inhibited. Ti⁴⁺ accelerates the phase transformation obviously and is also one of the most important additives [14]. In the present study, PO_4^{3-} (introduced by trisodium phosphate) and Ti⁴⁺ (introduced by titanyl sulfate) were chosen to study the influence of additives on the morphology of α -Al₂O₃ platelets synthesized by MSS. The mechanism of trisodium phosphate (Na_3PO_4 ·12H₂O) and titanyl sulfate (TiOSO₄) on the morphology of α -Al₂O₃ platelets will also be discussed.

Experimental Procedure

In order to obtain plate-like α -Al₂O₃ powders with smooth surfaces and avoid the tendency toward crystal twinning and aggregation, α -Al₂O₃ platelets were synthesized by MSS with reference to the literature [16]. Table 1 shows the raw materials used in the experiments. NaCl and KCl with a molar ratio of 1 : 1 were used as the molten salt. Al₂(SO₄)₃:18H₂O and the mixed salt with a molar ratio of 1 : 4 were dissolved in de-ionized water by heating to about 70 °C, and the resulting solution is designated as aqueous solution (a). Also Na₂CO₃ was completely dissolved in de-ionized water, and the resulting solution is designated as aqueous solution (b). Aqueous solution (b) was added into aqueous solution (a) where stirring was maintained at 70 °C. Stirring was continued

^{*}Corresponding author:

Tel:+86-21-5633-1462

Fax: +86-21-5633-3080

E-mail: lhzhu@mail.shu.edu.cn

raw material	Aluminum sulfate	Sodium carbonate	Sodium chloride	Potassium chloride	Sodium sulfate	Potassium sulfate	Trisodium phosphate	Titanyl sulfate
formula	$Al_2(SO_4)_3 \cdot 18H_2O$	Na ₂ CO ₃	NaCl	KCl	Na_2SO_4	K_2SO_4	Na ₃ PO ₄ ·12H ₂ O	TiOSO ₄
source	Meixing Chemical Company, Shang- hai	Hongguang Chemical Company, Shanghai	Chemical Agent Com- pany, Shang- hai	Lingfeng Chemical Company, Shanghai	ShihuiHewei Chemical Company, Shanghai	Medical Combine of China, Shanghai	Medical Combine of China, Chemi- cal Agent Com- pany	The Fifth Company of Reagent, Shenyang
purity	99.5%	99.5%	99.5%	99.5%	99.5%	99.0%	99.5%	99.5%

Table 1. the raw materials used in the experiment

for 15 minutes. At the same time, either Na₃PO₄·12H₂O (0.17 wt%, 0.34 wt%, 0.51 wt%, 0.68 wt%) or TiOSO₄ (1 wt%, 3 wt%, 6 wt%, 9 wt%, 12 wt%) was added to control the morphology of the powders. In particular, 0.51 wt% Na₃PO₄·12H₂O and 12 wt% TiOSO₄ were added to study their combined effect on the morphology of α -Al₂O₃ platelets. The resulting mixture of the two solutions was a gel. This gel was evaporated at 120 °C for 24 h to dryness, and the dried product was calcined at 1200 °C for 4 h. After being ultrasonic cleaned with de-ionized water repeatedly to remove the remaining salt and then dried, α -Al₂O₃ platelets were obtained. Meanwhile, α -Al₂O₃ powders without additives were also synthesized for comparison. The phase assembly of the powders was examined by X-ray diffraction analysis (XRD, RIGAKU, D/MAX-RB) with $Cu_{K\alpha}$ radiation ($\lambda = 1.5418$ Å). The morphology of α -Al₂O₃ platelets was observed by a scanning electron microscope (SEM, S-570).

Results and Discussion

Phase analysis

Fig. 1 shows XRD pattern of the synthesized powders. Only the peaks of α -Al₂O₃ are detected, indicating that single phase α -Al₂O₃ is synthesized by MSS.

Effect of Na_3PO_4 ·12H₂O addition on the morphology of α -Al₂O₃ platelets

Fig. 2(a) shows α -Al₂O₃ powders synthesized by MSS with no additive. Most of α -Al₂O₃ platelets are hexagonal, and there are a few overlapped particles. The size and shape of α -Al₂O₃ platelets are scarcely affected by 0.17 wt% Na₃PO₄·12H₂O, and some of them still agglomerate and overlap with each other. When 0.34~0.68 wt% Na₃PO₄·

Fig. 1. XRD pattern of the synthesized α -Al₂O₃ powders.

12H₂O is added, there is a significant change in the morphology of the plate-like α -Al₂O₃. Fig. 2(b) shows the morphology of α -Al₂O₃ platelets with 0.51 wt% Na₃PO₄·12H₂O added. The platelets become thin and quite irregular. However, less overlapped particles can be found, which shows that the agglomeration of α -Al₂O₃ platelets is inhibited by a certain amount of PO₄³⁻ effectively.

(b)

Fig. 2. The influence of a $Na_3PO_4 \cdot 12H_2O$ addition on the morphology of α -Al₂O₃ platelets. (a) 0 wt% $Na_3PO_4 \cdot 12H_2O$; (b) 0.51 wt% $Na_3PO_4 \cdot 12H_2O$.

Fig. 3. The influence of $TiOSO_4$ additions on the morphology of α -Al₂O₃ platelets. (a) 3 wt% $TiOSO_4$; (b) 6 wt% $TiOSO_4$; (c) 9 wt% $TiOSO_4$; (d) 12 wt% $TiOSO_4$.

Effect of TiOSO₄ addition on the morphology of α -Al₂O₃ platelets

The addition of TiOSO₄ is helpful to obtain regular hexagonal α -Al₂O₃ platelets, as shown in Fig. 3. The more TiOSO₄ is added, the smaller and thicker are the particles obtained. The mean diameter and thickness of α -Al₂O₃ platelets as a function of the amount of TiOSO₄ addition are shown in Fig. 4. When 3 wt% TiOSO₄ is added, the mean diameter and thickness of plate-like particles are about 11 µm and 1.1 µm, respectively. When 12 wt% TiOSO₄ is added, the mean diameter and thickness change to about 7 µm and 2.5 µm, and the aspect ratio is only 2.8.

Effect of Na_3PO_4 ·12H₂O and TiOSO₄ addition on the morphology of α -Al₂O₃ platelets

As indicated above, when only Na₃PO₄·12H₂O is added, α -Al₂O₃ flakes can be obtained, but they are quite irregular; while when only TiOSO₄ is added, α -Al₂O₃ particles with a regular hexagonal shape can be obtained, but they are too thick. Fig. 5 shows α -Al₂O₃ platelets synthesized in the NaCl-KCl salt mixture with the addition of 0.51 wt% Na₃PO₄·12H₂O and 12 wt% TiOSO₄. In comparison with Fig.2 (b), the extra addition of TiOSO₄ makes the shape of α -Al₂O₃ platelets more regular. Compared with Fig. 3(d), thinner α -Al₂O₃ platelets with an aspect ratio of 12.5 are obtained due to the extra addition of Na₃PO₄·12H₂O.

Fig. 4. The mean diameter and thickness of α -Al₂O₃ platelets as a function of TiOSO₄ addition amount.

This indicates that effective control of the morphology of plate-like α -Al₂O₃ particles may be achieved by adjusting the additions of Na₃PO₄·12H₂O and TiOSO₄.

Discussion

The crystal structure of alumina consists of a hexagonal close-packed oxygen layer with Al³⁺ occupying the

Fig. 5. The morphology of α -Al₂O₃ platelets with 0.51 wt% Na₃PO₄·12H₂O and 12 wt% TiOSO₄ added.

interstitial sites. α -Al₂O₃ belongs to the trigonal system in which the lattice points occupy (0, 0, 0), (2/3, 1/3, 1/3) and (1/3, 2/3, 2/3) in the hexagonal coordinate system, so the {0001} faces are hexagons.

The crystal development can be regarded as a series of "growth unit" which includes the formation of growth units, the interfacial adsorption of growth units, the movement of growth units and the desorption of growth units. According to the theoretical model of anionic coordination polyhedron growth units [18], the [Al-O₆] octahedron is considered as the growth unit for α -Al₂O₃. The crystal growth and the final morphology are determined by the crystallographic orientation and the manner of combination of the growth units. The crystal faces, to which the vertexes of an anionic coordination polyhedron point, grow rapidly and they seldom appear or even disappear. The crystal faces, to which the faces of the anionic coordination polyhedron point, grow slowly and they appear predominantly. The faces, to which the edges point, grow at a middle rate and they appear at times. For α -Al₂O₃ crystals, {10110} faces often disappear, {0001} faces appear predominantly and $\{11\overline{2}0\}$ faces appear at times. Therefore, α -Al₂O₃ tends to be hexagonal platelets.

However, the development of growth units and the crystal structure are greatly affected by the physical and chemical growth conditions. According to the Pauling Rule, the growth units of α -Al₂O₃ are inclined to combine together with a sharing of corners to form regular hexagonal platelets in the unforced environment. Since an entirely unforced environment can not be provided by the molten salt, it is difficult to obtain perfect particles with very regular shapes and a uniform distribution.

During crystal growth, the morphology of particles may change when some elements in the molten salt are adsorbed on the crystal surfaces owing to Van der Waals force, Coulomb force, chemical bond force etc. The effect of Na₃PO₄·12H₂O might be attributed to the adsorption of PO₄³⁻ on the crystal surfaces. In the [Al-O₆] octahedron, O²⁻ is located on the six apex angles. When the growth units combine in the form of faces, PO₄³⁻ is inclined to adsorb on {0001} faces where the apex angles of the [Al-O₆] octahedron is the least owing to the Coulomb force. Because PO₄³⁻ has a large ionic strength, the superimposition of growth units on {0001} faces is effectively inhibited by PO₄³⁻, and the growth of particles in the thickness direction [0001] is limited. The growth units tend to superimpose on the other two faces {1010} and {1120} when they combine with each other. As a result, thin and irregular platelets are finally developed. Also, the agglomerating and overlapping phenomena of platelets can be effectively improved due to the electrostatic resistance and steric-hindrance when enough PO₄³⁻ is adsorbed on the α -Al₂O₃ crystal surfaces.

The way TiOSO₄ affects the growth of α -Al₂O₃ platelets is different from Na₃PO₄·12H₂O because Ti⁴⁺ can form a solid solution with Al₂O₃. Nitta et al showed the existence of a small amount of hydrated titania in alumina powders by means of chemical analysis [16], which proved the substitution of Ti⁴⁺ for Al³⁺. Generally, in order to keep an electrostatic balance, three Ti4+ ions will diffuse into the crystal lattice to substitute four Al³⁺ ions at high temperatures, leading to extra Al³⁺ vacancies. This substitution process affects the structural style of the "growth unit" and development of crystals significantly. The growth velocity of $\{11\overline{2}0\}$ and $\{10\overline{1}0\}$ crystal faces is reduced and there is a minor difference in the growth velocity of various crystal faces with the increasing amounts of TiOSO₄. At last, well-developed hexagon-like α -Al₂O₃ particles with a decreased size and increased thickness are formed.

As indicated above, the growth of particles in the thickness direction [0001] is inhibited owing to the addition of PO_4^{3-} . Besides, the addition of Ti^{4+} promotes the formation of regular hexagonal α -Al₂O₃ particles with a decreased size and increased thickness. When a correct amount of Na₃PO₄·12H₂O and TiOSO₄ are added, the shape and aspect ratio of α -Al₂O₃ platelets can be controlled effectively owing to the combined action of PO₄³⁻ and Ti⁴⁺.

Conclusions

The influence of additives on the morphology of α -Al₂O₃ platelets by molten salt synthesis was investigated. When Na₃PO₄·12H₂O is added, α -Al₂O₃ platelets become thin and quite irregular owing to the adsorption of PO₄³⁻ on {0001} faces. Also, less overlapped particles can be found. When TiOSO₄ is added, regular hexagonal α -Al₂O₃ platelets with a decreased size and increased thickness are formed because of the substitution of Ti⁴⁺ for Al³⁺. When 0.51 wt% Na₃PO₄·12H₂O and 12 wt% TiOSO₄ are added, α -Al₂O₃ platelets with a regular shape and an aspect ratio of 12.5 are obtained.

References

- Y. Yoshizawa, M. Toriyama and S. Kanzaki, J. Ceram. Soc. Jpn. 106[12] (1998) 1172-1177.
- 2. M.M. Seabaugh, I.H. Kerscht and G.L. Messing, J. Am.

- 3. R.F. Hill and R. Danzer, J. Am. Ceram. Soc. 84[3] (2001) 514-520.
- S. Hashimoto and A. Yamaguchi, J. Mater. Res. 14[12] (1999) 4667-4672.
- S.G. Lee, H.C. Park, B.S. Kang, G.S. See, S.S. Hong and S.S. Park, Mat. Sci. Eng A. 466 (2007) 79-83.
- H.C. Park, S.W. Kim, S.G. Lee, J.K. Kim, S.S. Hong, G.D. Lee and S.S. Park, Mat. Sci. Eng A. 363 (2003) 330-334.
- H. Li, H.X. Lu, S.Wang, J.F. Jia, H.W. Sun and X. Hu, Ceram. Int. 35 (2009) 901-904.
- H.J. Kim, T.G. Kim, J.J. Kim, S.S. Park, S.S. Hong and G.D. Lee, J. Phys. Chem. Solids. 69 (2008) 1521-1524.
- 9. X.H. Jin and L. Gao, J. Am. Ceram. Soc. 87[4] (2004) 533-540.
- 10. M. Kumagai and G.L. Messing, J. Am. Ceram. Soc. 68[9]

(1985) 500-505.

 S. Hashimoto and A. Yamaguchi, J. Eur. Ceram. Soc. 19 (1999) 335-339.

Dai Yue-qin, Zhu Li-hui and Huang Qing-wei

- L. Jiang, Y.S. Wu, Y.B. Pan, W.B. Lin and J. K. Guo, Ceram. Int. 33[6] (2007) 919-923.
- 13. Y.Q. Wu, Y.F. Zhang and G. Pezzotti, Mater. Lett. 52 (2002) 366-369.
- 14. Z.Y. Song and Y.C. Wu, J. Chin. Ceram. Soc. 32[8] (2004) 920-925.
- S. Hashimoto and A. Yamaguchi, Adv. Sci. Technol. Part B 29 (2000) 711-718.
- K. Nitta, T.M. Shau and J. Sugahara, EN Patent 0 763 573A2, 5 September 1997.
- 17. Fukuda and Takeshi, EN Patent 1 148 028 A2, 4 December 2001.
- 18. W. Li, E. Shi and Z. Yin, Sci. China. 31[6] (2001) 487-495.