O U R N A L O F

Ceramic Processing Research

Rapid reactive synthesis of Ti₂AlC-TiB₂ composites by spark plasma sintering

Wei-Bing Zhou^{a,b,*}, Bing-Chu. Mei^b and Jiao-Qun. Zhu^a

^a School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

^b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

In this paper, dense Ti_2AlC/TiB_2 composites were successfully fabricated by a rapid reactive sintering process by a spark plasma sintering (SPS) technique using Ti, Al, TiC and B₄C powders. The microstructure, flexural strength and fracture toughness of the composites were investigated. The experimental results indicate that the Vickers hardness increased with an increase in TiB₂ content. The maximum flexural strength (573 MPa) and fracture toughness (6.2 MPa \cdot m^{1/2}) were achieved through the addition of 10 vol%TiB₂. The incorporation of a TiB₂ phase makes a positive contribution to its electrical conductivity.

Key words: Spark plasma sintering, Ti₂AlC-TiB₂, Composite, Properties.

Introduction

The ternary compound Ti₂AlC is a representative of a family of new materials the so-called M_nAX_{n+1} phases, where M is an early transition metal, A is an A-group element (mostly IIIA or IVA) and X is either C and/or N. It exhibits a surprising combination of properties of both ceramics and metals, including low density, high modulus, good thermal and electrical conductivity, excellent thermal shock and high-temperature-oxidation resistance, damage tolerance and easy machinability [1-8]. The combination of these remarkable properties makes Ti₂AlC a highly promising candidate for diverse application. However, some weaknesses, such as low hardness and lower strength, limit the potential applications of Ti₂AlC as a hightemperature structural material. The incorporation of a second phase is an effective way to overcome these weaknesses. A number of works have been published on improving the mechanical properties of Ti₃SiC₂ [9-12] and Ti₃AlC₂ [13-15]. However; work on the strengthening of Ti₂AlC is very limited.

Owing to its high hardness, high modulus, excellent chemical stability, and appropriate thermal expansion coefficient, TiB_2 was chosen to produce Ti_2AlC/TiB_2 composites in order to increase the hardness and strength of Ti_2AlC . In this study, we synthesized fully-dense Ti_2AlC/TiB_2 composites from $B_4C/TiC/Ti/Al$ powders by a spark plasma sintering technique. The phase composition and microstructure of the composites were investigated. The room temperature mechanical properties including hardness, flexural strength, and fracture toughness of the composites were measured.

Materials and Experiment

High-purity powders of Ti (99.2%, 10.6 µm), B₄C (99.5%, 2.8 μ m), TiC (99.8%, 2.6 μ m) and Al (99.6%, 1.7 μ m) were selected as starting materials. According to the nominal reaction: (1) $Ti + TiC + Al = Ti_2AlC$ and (2) 3Ti + $B_4C = TiC + 2TiB_2$, the volume fraction of TiB_2 in the composites was designed to be 5%, 10%, 20%, and 30%. After ball milling in ethanol for 24 h, the powders were dried, sieved, and compacted uniaxially at 20 MPa in a graphite mold, pre-sprayed with a layer of BN. The admixture with a designed composition was firstly mixed in ethanol for 24 h and then was filled into graphite crucibles 40 mm in diameter and finally sintered in a vacuum in a spark plasma sintering system (Dr.1050, lzumi Technology Co. Ltd). The samples were heated at a rate of 80 Kminute⁻¹, in a vacuum of 0.5 Pa, and under a pressure of 30 MPa in the preparation process. The sintering temperature was 1300 °C and the soaking time was 8 minutes. The temperature was measured by means of an optical pyrometer focused on to the sintered sample through a small hole in the die.

Before examination, the surfaces of the sintered samples were machined to remove the layer contaminated by the carbon sheet, using a fine grit; high speed diamond wheel. The density of Ti_2AIC/TiB_2 composites with different contents of TiB_2 was measured by the Archimedes method. The Vickers hardness was tested at a load of 9.8 N with a dwell time of 30 s. Three-point bending tests were preformed to the measure flexural strength and fracture toughness (K_{IC}). The size of specimens for flexural strength testing was $3 \times 4 \times 36$ mm³ and the crosshead

^{*}Corresponding author:

Tel : +86 27 87651837

Fax: +86 27 87879468

E-mail:jsyczwb@hotmail.com

Fig. 1. X-ray diffraction patterns of composites sintered at 1300 °C by SPS with (a) 5%TiB₂ (b) 10%TiB₂ (c) 20%TiB₂ (d) 30%TiB₂.

speed was 0.5 mm minute⁻¹. K_{IC} was measured using a single-edge notch beam (SENB) method with specimen dimensions of $4 \times 8 \times 36$ mm³. A notch with a size of 4 mm in length and ~0.15 mm in width was made by an electrical discharge method. The notch root radius was about 0.15 mm. The crosshead speed for fracture toughness testing is 0.05 mm minute⁻¹. Powders drilled from the samples were used for X-ray diffraction (XRD) analysis. The microstructures, facture surfaces and crack propagation of the samples were investigated by scanning electron microscopy (SEM). The electrical conductivity of the samples was measured at room temperature using a four -point probe detector.

Results and Discussion

Synthesis of Ti₂AlC/TiB₂ composites

Fig. 1 shows the XRD diffraction patterns of Ti_2AlC/TiB_2 composites sintered at 1300 °C. It is worth noting that there was little TiC impurity in the Ti_2AlC/TiB_2 composites, even when the TiB₂ content reaches 30 vol%, which indicates the in-situ reaction may be complete. Meanwhile, there is no evidence that shows a reaction between Ti_2AlC and TiB_2 . Actually TiB_2 only dilutes the initial powders and delays the reaction process.

Mechanical properties of Ti₂AlC/TiB₂ composites

Fig. 2 shows the density of the sintered samples and Vickers hardness with different TiB₂ contents. The measured density of all the Ti₂AlC/TiB₂ composites is 98.3-99.6% of the theoretical density. A significant decrease in density is observed when the TiB₂ content exceeds 10%. The main reason is the agglomeration of the TiB₂ particles. The introduction of the TiB₂ phase obviously enhances the hardness of Ti₂AlC; the hardness increases from 4.8 GPa to a maximum of 10.8 GPa for the Ti₂AlC/30 vol% TiB₂ composite, which is much higher than that of the pure Ti₂AlC (2.8 GPa [8]).

Fig. 2. The effect of TiB_2 on the relative density and Vickers hardness of Ti_2AIC/TiB_2 composites.

Fig. 3. The flexural strength and fracture toughness of Ti_2AIC/TiB_2 composites.

Fig. 3 shows the effect of the TiB₂ content on the flexural strength and fracture toughness of the composites. It can be seen that flexural strength increases from 484 to 573 MPa as the volume content of TiB₂ increased from 5 to 10% and decreases to 507 MPa at a 30 vol.% TiB₂ content . K_{IC} reaches a maximum value of 6.2 MPa·m^{1/2} at 10 vol.% TiB₂ content, and then decreases dramatically to 5.4 MPa·m^{1/2}. The flexural strength and fracture toughness of monolithic Ti₂AlC reported by Wang and Zhou [8] were 275 MPa and 6.5 MPa·m^{1/2}, respectively. Compared with monolithic Ti₂AlC, the strengthening effect is rather significant for the flexural strength, while there is little effect on fracture toughness value.

Room temperature electrical conductivity of Ti_2AIC/TiB_2 composites

The effect the TiB_2 content on the electrical conductivity of Ti_2AIC/TiB_2 composites is shown in Fig. 4 It can be

Fig. 4. The effect of TiB_2 on the electrical conductivity of Ti_2AIC/TiB_2 composites.

Fig. 5. SEM of the samples with different TiB_2 contents sintered at 1300 °C (a) 5% TiB_2 (b) 10% TiB_2 (c) 20% TiB_2 (d) 30% TiB_2 .

clearly seen that the electrical conductivity of the composites increases almost linearly with increasing TiB₂ content in the range of 5-30 vol%. The electrical conductivity of monolithic Ti₂AlC was 2.7×10^{6} S·m⁻¹, which was reported by Barsoum *et al.* [3]. However, the electrical conductivity of the Ti₂AlC/30 vol%TiB₂ composite was 3.1×10^{6} S·m⁻¹, which is slightly higher than that of monolithic Ti₂AlC. The enhanced electrical conductivity can be mainly attributed to the lower resistance of TiB₂ compared with the Ti₂AlC matrix. Unlike other types of strengthening phases (such as SiC, Al₂O₃), incorporation of TiB₂ makes a positive contribution to the electrical conductivity of Ti₂AlC/TiB₂ composites.

Microstructure of Ti₂AlC/TiB₂ composites

SEM micrographs of the fracture surfaces of the Ti_2AIC /TiB₂ composites are shown in Fig. 5. The laminated Ti_2AIC grains can easily be identified in these micrographs. EDS analysis revealed that the fine particles in the composites were TiB_2 . The fracture was mainly an intergranular fracture, although some of the bigger platelet grains showed transgranular fractures. With an increase in the amount of TiB_2 particles, the grain size and aspect ratio of the matrix decreased. With additions of TiB_2 content higher than 10 vol%, agglomeration of TiB_2 particles in the composites was obviously observed. This may explain how the mechanical properties of composites decreased when the TiB_2 content exceeded 10 vol%.

Conclusions

Dense Ti₂AlC/TiB₂ composites were synthesized from $B_4C/TiC/Ti/Al$ by spark plasma sintering under a uniaxial pressure of 30 MPa in an Ar atmosphere at 1300 °C for 8minutes. The introduction of TiB₂, especially a 10 vol.% content, raises the hardness, flexural strength and toughness of the composite. But the fracture toughness of Ti₂AlC/20 vol% TiB₂ composite begins to decrease due to the agglomeration of the TiB₂ particles.

Acknowledgements

The authors are grateful for the support by the National Natural Science Foundation of China under Contract No. 50572080, No. 20771088 and Doctoral Foundation of Wuhan University of Technology (No. 471-38650142).

References

- 1. M.W. Barsoum, Prog. Solid. St. Chem. 28 (2000) 201-281.
- 2. M.W. Barsoum, D. Brodkin, and T. El-Raghy, Script. Mater. 36[5] (1997) 535-541.
- M.W. Barsoum, M. Ali, and T. El-Raghy, Met. Mat. Trans. A 31[7] (2000) 1857-1865.
- 4. M.A. Pietzka and J.C. Schuster, J. Phase Equilib. 15 (1994) 392-400.
- A.G. Zhou, C.A. Wang, Z.B Ge, and L.F Wu, J. Mater. Sci. Lett. 20[21] (2001) 1971-1973.
- M. Lopacinski, J. Puszynski, and J. Lis, J. Am. Ceram. Soc. 84[12] (2001) 3051-3053.
- 7. Y. Khoptiar and I. Gotman, Materials Letters 57[1] (2002) 72-76.
- 8. X.H Wang and Y.C.Zhou, Zeitschrift. Fur. Metallkunde. 93[1] (2002) 66-71.
- H.J. Wang, Z.H. Jin, and Y. Miyamoto, Ceram. Inter. 28[8] (2002) 931-934.
- S.B. Li, J.X. Xie, L.T. Zhang, and L.F. Cheng, Mater. Sci. Eng. A. 381[1-2] (2004) 51-56.
- Y.M. Luo, S.Q. Li, W. Pan, J. Chen, and R.G. Wang, J. Mater. Sci. 39[9] (2004) 3137-3140.
- E. Benko, P. Klimczyk, S. Mackiewicz, T.L. Barr, and E. Piskorska, Dia. and Rel. Mater. 13[3] (2004) 521-525.
- 13. J.X. Chen and Y.C. Zhou, Script. Mater. 50[6] (2004) 897-901.
- Z.J. Lin, M.J. Zhuo, Y.C. Zhou, M.S. Li, and J.Y. Wang, Script. Mater. 54[10] (2006) 1815-1820.
- C. Li, M.S. Li, Y.C. Zhou, J. Zhang, and L.F. He, J. Am. Ceram. Soc. 90[11] (2007) 3615-362.