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Artificial neural network has becoming a mainstream technology in the domain of complex materials data analysis. Based on
a slag glass-ceramic system we brought forward a virtual sample technology to increase the training samples by fluctuating
the content of main compositions in a proper small amplitude. Simulation results proved that a good virtual sample set can
not only improve the network’s prediction ability considerably, but can also suppress the “overtraining” phenomenon. Therefore
a virtual sample improved neural network model can learn the relationship from a small size experimental data set and give
an accurate and stable prediction for the test samples. This is more helpful to the material data analysis and can facilitate the
design and development for new materials.
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Introduction

Artificial neural networks (ANNs) are mathematical
constructions that are believed to loosely model the working
of the human brain. They are nowadays applied in different
domains especially in the area of data analysis. Compared
to traditional methods, the ANNs were found to be a
more efficient tool for multimensional, complex, and
quantitative problems such as material data analysis
and property prediction [1]. With much effort concentrating
on ANN, some of the bottlenecks encountered when
developing NNs for data modeling are, at least in part,
overcome. Also neural network has become a mainstream
technology in the domain of materials data [2]. However,
establishing a good neural network model for a specific
problem requires not only the selection of an appropriate
neural network type, but also a good problem description.
Many of the failures in the application of NN are in fact
not caused by the NN technology, but are a consequence
of improper problem definition and data selection. At
present the acquisition of sufficient and effective
experimental data is of the most importance for complex
materials-analysis problems [3, 4].

Exploiting of slag glass ceramics has both environmental
and commercial value. But the relationships of composition,
microstructure and properties of slag glass-ceramics are very
intricate. The data from experiments are multidimensional,
complex and nonlinear, which is hard to analye with

ordinary statistical methods such as regression analysis.
This becomes a main obstacle for the exploiting of new
materials. In our previous study, an artificial neural network
(ANN) model was applied to a glass-ceramic system for
data analysis and property prediction. This network model,
which uses a new robust back propagation algorithm as
a learning law,  proved to have a strong learning ability
in the slag glass ceramic domain [4, 5]. However, its
applications in material data analysis and property prediction
are not always satisfactory because there is insufficient
and effective data to train the network.

In this paper, based on the basic conception of slag glass-
ceramic material, we introduce a virtual sample technology
to fabricate abundant data from a small size original
data set. The results of our research indicate that the data
developed by this technology can not only improve the
network learning and prediction ability, but can also
suppress the so-called “over-training” phenomenon
effectively. Therefore, with this new technology, an ANN
model can be applied to a complex material domain more
effectively and reliably even when not much experimental
data has been provided.

The basic principle of virtual sample technology

Glass ceramics are composite materials consisting of
a glass matrix and a crystalline phase, which generally
are produced in two steps: 1) glass melting and forming
and 2) crystallization. The slag glass-ceramics, which take
slag and waste as raw materials, are also environment-
friendly materials [7, 8]. The compositions of slag glass-
ceramic are nearly the same as ordinary glass or ceramic
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except for the “minor components” such as TiO2, P2O5,
MnO2, ZnO, sulfide etc, which are introduced by the slag
or waste used. The main components such as SiO2, Al2O3,
CaO, and MgO, whose content is usually above 90% of
the total, determine the basic structure and crystalline
phases that can be produced from the glass matrix in the
process of thermal treatment. These “minor components”,
although minor in content, also have a considerable and
complex influence on the microstructure and properties
of the glass through the effection on crystallization.

According to the phase diagram of a certain glass system
such as SiO2-Al2O3-CaO, the samples with only a small
difference in the contents of SiO2, Al2O3 and CaO will
have nearly the same possibility for crystal precipitation.
In this context the nucleation and crystallization processes
of a glass ceramic are mainly affected by the minor
components. So if the contents of minor components are
fixed, the samples with a small variation in the main
components will have the same microstructure and of
course identical properties. Based on this simple principle
we can develop “virtual samples” from a real one by
changing only the contents of the main component over
a small amplitude. The number of these virtual samples
is usually several times more than these originals. More
importantly, they can be regarded as real ones if a proper
content range is chosen. More effective “information”
about the relationship which is implied in the original
data can be provided by them and thus the performance
of the trained network will have be considerably improved.
The advantages of these virtual samples technology are: 1)
large numbers of training samples can be developed from
a small size original data set by a numerical method rather
than from experiments, thus much money, time and
manpower are saved. 2) If the original samples are valid,
the virtual samples derived from them with a proper content
range amplitude are also effective, then the trouble to
eliminate invalid or conflicting data from a large size
data set is avoided.

Simulation experiments and discussion

The fabrication of virtual samples
A CaO-Al2O3-SiO2 system glass ceramic was developed

from a blast-furnace slag [5]. A series of samples with
different contents of compositions were prepared by an
ordinary melting and thermal treatment method [8]. The
coefficients of thermal expansion (CTE) were measured
between 25-300 oC.The experimental data of composition
and the CTE of different samples are shown in table 1.
We define the first 5 components as “Major components”
and last 5 components as “Minor components”. Note that
we call an components, for example MgO, as “major
component” not because it is large in content but because
it is common and/or necessary in the glass formation. There
are 14 specimens in this data set. The first 11 samples
were chosen as the training set and the last three as the
test set.

According to the principle of virtual sample technology
brought forward above, we altered the contents of main
components over a small range, for example ± 0.5%,
while keeping the content of minor components fixed.
Then 2K virtual samples were obtained for each original
sample, where K is the number of input parameters allowed
to alter. In the case where we take the first 5  components
in table 1 to alter then 25 virtual samples can be developed
form the original sample. However, it is unnecessary to
present all these 25 samples to the network for training.
According to the theory of orthographic design, 8 virtual
samples developed by a seven factors and two levels
orthogonal design table can represent all the 25 samples.
Thus 11 × 8 samples are obtained from the original training
set which contains 11 samples. Table 2 lists the 8 virtual
samples developed from the first original sample in
table 1 with a content alteration of ± 1%. In the following
cases, we fabricate five virtual sample sets by fluctuating
the contents of major components with amplitude of
0.5%, 1%, 2%, 3%, and 5% respectively, while keeping

Table 1. Element compositions and properties of CaO- A12O3-SiO2 system slag glass-ceramic

No.
        Major component (w%)          Minor component (wt%) CTE 

(10−7/oC )SiO2 Al2O3 CaO Na2O MgO Mn2O3 Fe2O3 TiO2 ZnO S

01 74.03 02.51 12.51 5.97 2.75 0.14 0.75 0.21 1.61 0.95 062.1

02 74.02 05.02 10.01 5.97 1.49 0.26 1.04 0.41 1.61 1.08 058.3

03 69.02 05.02 10.01 5.50 1.49 0.26 1.04 0.41 1.61 1.08 058.8

04 64.23 05.14 19.83 5.44 1.47 0.26 1.12 0.40 1.93 1.24 077.8

05 64.23 15.09 09.86 5.44 1.47 0.26 1.12 0.40 1.93 1.24 060.9

06 59.23 05.14 24.81 5.44 1.47 0.26 1.12 0.40 1.93 1.24 080.2

07 54.23 05.14 29.86 4.97 1.47 0.26 1.12 0.40 1.93 1.24 082.8

08 49.43 20.21 19.71 4.97 2.93 0.51 1.70 0.80 1.93 1.50 071.9

09 44.23 05.14 39.82 4.50 1.47 0.26 1.12 0.40 0.13 1.24 105.3

10 44.43 25.25 19.71 4.50 2.93 0.51 1.70 0.80 0.13 1.50 071.6

11 39.43 20.21 29.68 4.50 2.93 0.51 1.70 0.80 1.93 1.50 076.2

12 69.02 05.02 14.99 5.50 1.49 0.26 1.04 0.41 1.61 1.08 067.6

13 64.23 10.12 14.84 5.44 1.47 0.26 1.12 0.40 1.93 1.24 066.1

14 54.43 15.25 19.71 4.97 2.93 0.51 1.70 0.80 1.93 1.50 075.1
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the content of minor components fixed. We denote these
five virtual sample sets as I, II, III, IV, and V respectively.

The prediction performance of the networks trained
by virtual sample sets.

The original sample set as well as the five virtual sample
sets, after being preprocessed with a statistical method,
were presented to train the 3-layer feedforward neural
networks (the fabrication details of the network are presented
in ref. 6). The study error was set to 0.001. After that
the test samples were presented to each trained network
for predictions of thermo-expansion. The relative error
(εr) between the prediction and experimental value was
calculated, and for each network the prediction error on

the test set ( , where m is the number of

test samples) were also calculated. This prediction error,
εra, represents the prediction ability of the trained network,
which in turn reflects the effectiveness of the data set
presented to train the network.. We noticed that if different
networks converge to about the same final error and
then give close predictions, it is probably the best result
that can be obtained with the data set used. We call this
the networks’ “stability”. If only one or two networks
could be trained to a very low error, or the predictions are
saliently different with different networks, we believe the
real relationship was not disclosed and the predictions
are “unstable”. Therefore, for each training set, nine
networks with different hidden nodes are trained. These
networks have 10 input nodes and 1 output nodes, and
the number of hidden nodes, N, varies from 2M-3 to
2M + 5, where M = 10 is the number of input nodes.

Figure 1 shows the curves of prediction error, εra,
versus the number of hidden nodes (Nh) for networks trained
by the original set and the five virtual sample sets. For
the nine networks trained by each sample set, the average
value and standard deviation of prediction errors were
calculated and listed in table 3. We can see from Fig. 1, the
prediction errors of networks trained by original data
are as big as 3-5%, and oscillate distinctly with different
Nh. The virtual sample set I has only an improvement
of the prediction performance, which is possibly due to
an “error dilute” effect; that is, errors inevitably exist in
the content of compositions, which arise either in the
weighing of raw materials or in the material fabrication

process. The data we get are in fact approximate values
that are around the real ones. Therefore, a fluctuation of
the content of composition will cover the real value and
thus the error is “diluted”. In this case, because the
fluctuation amplitude is so small (0.5%) that the
“information” included in the virtual samples is nearly
identical to the original data, thus the improvement is
insignificant.

When the fluctuation amplitude is up to 1% in virtual
sample II, the prediction error shows a considerable decrease
by nearly a factor of two as compared to that of the
networks trained by the original data. This is because,
as we have pointed out in above, the virtual samples
developed in a proper fluctuating amplitude are essentially
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Table 2. Virtual samples developed from the first real sample in table 1 with an altering in composition of 1%

No. SiO2 Al2O3 CaO Na2O MgO Mn2O3 Fe2O3 TiO2 ZnO S CTE

1 74.77 2.54 12.63 6.03 2.84 0.14 0.75 0.21 1.61 0.95 62.1

2 74.77 2.54 12.63 5.91 2.72 0.14 0.75 0.21 1.61 0.95 62.1

3 74.77 2.48 12.38 6.03 2.84 0.14 0.75 0.21 1.61 0.95 62.1

4 74.77 2.48 12.38 5.91 2.72 0.14 0.75 0.21 1.61 0.95 62.1

5 73.29 2.54 12.38 6.03 2.72 0.14 0.75 0.21 1.61 0.95 62.1

6 73.29 2.54 12.38 5.91 2.84 0.14 0.75 0.21 1.61 0.95 62.1

7 73.29 2.48 12.63 6.03 2.72 0.14 0.75 0.21 1.61 0.95 62.1

8 73.29 2.48 12.63 5.91 2.84 0.14 0.75 0.21 1.61 0.95 62.1

Fig. 1. Curves of prediction error versus the number of hidden nodes
for networks trained by different data sets.

Table 3. The average value and standard deviation of prediction error
for networks trained by different data sets

Bathe of network Average value (%) Standard deviation

Original 3.729 0.481

I(0.5%) 3.458 0.441

II ( 1% ) 1.981 0.415

III (2%) 1.304 0.204

IV (3%) 1.315 0.318

V (5%) 2.474 0.384

VI 3.078 0.980
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real samples, and more “information” about the relationship
is provided than that in the original data. Thus the
increase of the prediction ability is not surprising. As
we can see from Fig. 1 or table 3, when the fluctuation
amplitude is up to 2% the performance of the prediction
has been further improved in both the prediction value
and the stability, as the average prediction error drops
to 1.30% and the standard deviation to 0.204. With an
increase in the fluctuation amplitude to 3%, the prediction
error is still small but the stability of the prediction is a
little worse. This gives a hint that 2% is the best amplitude
to develop the virtual samples for the slag glass-ceramic
system under study. With a further increase in the amplitude
to 5%, we can discover that the virtual samples developed
from No. 2 and No. 3, or those developed from No. 6 and
No. 7 original samples in table 1, overlap in the content
of major compositions. As a result conflicting data were
introduced in this virtual sample set and consequently
the prediction performance of the networks trained
deteriorates.

Another mode is also used to fabricate virtual samples.
In this mode, all the 10 components in table 1 were used
to develop virtual samples with a fluctuation amplitude
of 3%. An eleven factors and two levels orthogonal design
table was used to produce virtual samples, thus from
each original sample 12 virtual samples were developed.
By this mode a data set consisting of 132 virtual samples
were obtained from the original sample set and denoted
as data set VI. The prediction performance of the networks
trained by virtual sample VI, as shown in Fig. 1, is very
poor especially in the prediction stability. This is because
the microstructure and properties are very sensitive to the
contents of minor components, virtual samples developed by
this mode distort the real relationship between composition
and property thus the predictions are poor. This simulation
hints that strictly controlling the the contents of minor
component, especially the crystal nucleation agents, is
very important in the preparation of slag glass ceramic
materials.

An interesting phenomenon appears in Fig. 1 is, as
we have pointed out in our previous study, that when a
network has 2M + 1 hidden nodes, the prediction error
εra is relatively small. Therefore in the following study
networks with a topology of 10-21-1 were adopted.

The influence of virtual samples on the “overtraining”
phenomenon

The backpropagation network, which is probably used
in 95% of the existing applications [9], suffers from a
phenomenon called “overtraining” shown in Fig. 2. In
this case, the error in the training set will monotonically
decrease and finally reach a minimum value as training
continues. However, the performance on the test set
increases for a while but then gets worse again when it
reaches to the overtraining point. The best results for
the specified neural network architecture are obtained
when the training process is stopped at the moment the

error in the test set reaches its minimum [2]. A small
positive numerical value, η, which is called the “study
error”, is preset to control whenever the training process
terminates. In the study present here, for each training
sample l if |tl-yl| < η then the training process terminates,
where tl is the network’s output value and yl the
experimental value. If an improper small η is chosen
the neural networks will encounter the “overtraining”
problem, while an improper large η will make the training
stop before the network learns the exact relationships.
This subtle choice of study error is troublesome to most
developer for, as our knowledge, only a “trial and error”
method can be used to decide a proper study error.

Networks with a topological structure of 10-21-1
were trained by the original data set as well as virtual
data sets II, III, IV, and V, respectively, with study errors
varying from 0.006 to 0.0001. The curves of prediction
error as a function of study error are shown in Fig. 3.
With a decrease of the study error, all curves have a
rapid descent first and then reach to a minimum. A
further decrease of η the performance of prediction will
retain the saturation status for a while before becoming
worse again. This is the typical “overtraining” phenomenon.
We denote the range from the saturation point to the

Fig. 2. The overtraining phenomenon.

Fig. 3. Curves of prediction error versus study error for networks
trained by different data sets.
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overtraining point as the saturation range (Fig. 2), and
the average error in this range as the “saturation value”.
The saturation value represents the network’s prediction
ability and the saturation range denotes the stability of
the prediction performance with regard to the study
error. The latter will decide the space for a network
developer to choose the study error. The saturation value
and range for each curve are listed in table 4.

As shown in Fig. 3 and table 4, nearly all curves reach
the saturation status at η = 0.001. As to the network
trained by the original data its prediction performance
gets worse at η = 0.0005. But for the networks trained
by data set II, Their overtraining points do not appear
until η = 0.0002. Thus the saturation range expands by
a factor of two. The best performance of prediction is
obtained from the networks trained by data set III which
have a range of content of 2% in the major components.
The saturation range is from 0.0002 to 0.001, and the
prediction error in this range is as small as 0.9%. The
network trained by data set IV has the smallest saturation
value, 0.74%, but the saturation range is relatively
small compared to that of the networks trained by data
sets II and III. The prediction performance of the network
trained by data V gets worse quickly after reaching its
saturation value and thus has a very short saturation
range. This simulation result agrees well with the quality
of the virtual sample set we have analyzed in section
3.2. From these simulation results we can conclude that
a good virtual sample set can not only improve the
network’s prediction ability, but can also suppress the
“overtraining” phenomenon effectively, the reason for
which is obvious, that is, plenty of effective training
samples are used to train the network.

Conclusion

Based on the complex slag glass-ceramic system, we
introduced a virtual sample technology to enlarge the
training data for artificial neural networks through altering
the content of composition over a proper small range.
Research shows that a good virtual sample set can not
only considerably improve the network’s learning ability
and prediction performance, but can also suppress the

“over-training” phenomenon. We ascribed this to the
extra data which are used to train the network and the
extra information about the relationship to be disclosed
provided by these virtual samples. It is worthwhile
noticing that not all parameters are suitable to fabricate
a virtual sample, for example, the parameters that the
relationship are very sensitive to or those which only
have discrete values. For most material systems such as
ceramic, concrete, glass-ceramic, etc. this virtual sample
technology can help the ANN model learn the intricate
relationships from a small size data set, and give accurate
predictions that won’t vary with the change of network’s
topology of the hidden layer and the “study error” over
a considerable range. So this new technology is possibly
a powerful and reliable tool for data analysis with
ANNs and can facilitate the design and development of
complex material system.
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