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This paper succeeds in the description of activity (a), chemical potential (μ), and their thermodynamic relations of dispersed
and flocculated particles of a one-component colloidal system. The activity of dispersed particles (ad) is expressed by Henry’s
law and equal to the product of the molar fraction (α) of dispersed particles in a suspension and the activity coefficient (γ0)
expressed by Vi/Vmax (Vi : total volume fraction of dispersed and flocculated particles, Vmax : maximum packing density of
particles). The activity of flocculated particles (ag) follows Raoult’s law and is expressed as (1 − α) using the Gibbs-Duhem
equation. The μ value is represented by the defined activity. The difference of μ for the dispersed and flocculated particles
(Δμ = μg− μd) was used to evaluate the stability of the colloidal state. The Δμ value was also coupled with the activation energy
(ΔGm) for the formation of particle clusters from the dispersed state. The enthalpy term (ΔHm) in the activation energy is
equivalent to the maximum value of the interaction energy (Ei(max)) as a function of distance between two particles in the
DLVO theory. Based on the above analysis, a colloidal phase diagram for one-component systems of 10-1000 nm diameters was
constructed. This phase diagram explains well the experimentally-determined packing density for dispersed and flocculated
suspensions.

Key words: Thermodynamics, Colloidal suspension, Phase diagram, Packing density, Dispersion, Flocculation, Activity, Chemical
potential.

Introduction

Powder processing through colloidal suspensions is
widely recognized to be a forming method which
can improve the microstructure and the resultant
physicochemical properties of advanced ceramics [1-6].
The guideline of colloidal processing is given by the
interaction energy between charged particles, which
corresponds to the summation of van der Waals attraction
energy and the electrostatic repulsive energy by the electrical
double layer (DLVO theory) [7-10]. The DLVO theory
explains the dispersed and flocculated state depending
on the surface potential of the particles. Based on the
DLVO theory, we constructed a metastable phase diagram
of a one-component colloidal system in the map of surface
potential and solid content of particles to understand the
particle size effect on the stability of a colloidal suspension
[9, 11, 12]. This phase diagram is effective to understand
the properties of a colloidal suspension of nanometre-
sized particles. Aksay and Kikuchi propose a phase
diagram for a one-component colloidal system of monosize
spherical particles, calculated by the cluster variation
method (CVM) based on a two dimensional lattice gas
model [4, 13]. This phase diagram shows the stability
regions of colloidal gas, liquid and solid phases and

outlined with the theoretically reduced temperature
k(B)T/Ei and solid content, where k(B) is the Boltzmann
constant, T is the thermodynamic temperature, and Ei is
the interaction energy between particles. Russel also reports
an equilibrium phase diagram of one-component colloidal
system [14]. Both these phase diagrams are basically
the same and helpful to control the nature of colloidal
suspensions and to predict resultant microstructures of
consolidated powder compacts. Deniz et al. [15] have
reported colloidal phase diagrams calculated from first
order perturbation theory for three different aqueous
aluminium oxide nanoparticle suspensions containing
non-polarizable salt, NaCl or NaI. Zamora and Zukoski
[16], and Ramakrishnan and Zukoski [17] show phase
diagrams calculated by perturbation theory using the
Yukawa potential for nanoparticle suspensions. These phase
diagrams in references 15-17 for nanoparticle suspensions
are similar to the phase diagrams previously reported in
references 13 and 14.

For more understanding of the properties of colloidal
suspension, we need a description of the thermodynamics
of colloidal systems, which may be used as a guideline
of colloidal processing. Unfortunately, no paper has
established the thermodynamics of colloidal suspensions
and described the relationship between the colloidal
phase diagram and thermodynamics. In this paper, we
propose a simple suspension model and discuss the
thermodynamics of the suspension. From the derived
thermodynamic relations, we have constructed a one-
component colloidal phase diagram and compared with
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the previously reported phase diagrams. The constructed
phase diagram also succeeded in a quantitative explanation
of the dependence of packing density of colloidal particles
on particle size. This type of colloidal phase diagram is
useful to predict the flow behavior of a colloidal suspension
and the phase transition from colloidal liquid to colloidal
solid in ceramic processing. Much time can be saved
by reference to a phase diagram in the forming of ceramic
particles with different sizes or different surface chemistries.

Definition of Activity and Chemical Potential

Figure 1 shows a structure model of colloidal suspension
(1 l volume) containing both dispersed and flocculated
particles. The suspension contains ni spherical particles
of radius r. The total volume of ni particles is Vi = nivi

(vi = 4πr3/3, volume of one particle). The volume of
dispersed (Vd) and flocculated (Vg) particles is Vi α and
Vi (1 − α), respectively, where α is the molar fraction
(volume fraction) of dispersed particles to the total
particle content. The concentration (mol/l) of dispersed
(Cd) and flocculated (Cg) particles is also defined to be
niα/nA (= Viα / vinA, nA: Avogadro number) and ni (1 − α)/
nA, respectively. The activity of dispersed particles (ad)
is defined by Eq. (1) [18]:

(1)

where Xd and γ0
d  are the molar fraction and activity

coefficient of dispersed particles, respectively. According
to the definition of activity (0 < a < 1, Xd → 1, ad → 1),
γ0

d  should become 1 at α = 1. The above condition leads
to the relation of γ0

d = Vi/Vmax, where Vmax is the
maximum volume of particles packed in 1 l suspension.
For the close packing and random close packing models
[19], Vmax is 0.740 and 0.637 l, respectively. The γ0

d

value results in 1 for Vi = Vmax. That is, ad is defined as
a ratio of the volume of dispersed particles to the maximum
volume packed, ad = Vi α/Vmax = Vd/Vmax. When a
colloidal suspension is prepared at a certain volume fraction
(Vi), the activity of dispersed particles is smoothly given

by Eq. (1). This relation is known as Henry’s law [18].
Since the activity of dispersed particles can be defined

by Henry’s law, the activity of flocculated particles (ag)
is derived using the Gibbs-Duhem equation[18], Xd dln
ad + Xg dln ag = 0 (Xg = 1 − α: molar fraction of flocculated
particles). When ad is described by Henry’s law, ag is
equal to Xg, which is known as Raoult’s law [18]. That is :

(2)

The flocculated particles behave as an ideal solution.
The activity of dispersed and flocculated particles (Eqs. (1)
and (2)) is related to the chemical potential as follows :

(3)

(4)

The μd0 value represents the chemical potential of
dispersed particles for α = 1 and γ0 (= Vi/Vmax) = 1.
Similarly, the μg0 corresponds to the chemical potential
of flocculated particles for α = 0. The difference of
chemical potential of both the particles is expressed by
Eq. (5) :

(5)

where Δμ0 represents μg0−μd0. The condition of Δμ > 0
indicates the change of flocculated particles to dispersed
particles. On the other hand, dispersed particles change
to flocculated particles at Δμ < 0. The dispersed and
flocculated state reaches an equilibrium at Δμ = 0. The
critical fraction (αc) of dispersed particles at Δμ = 0 is
given by Eq. (6) :

(6)

Change of Dispersed to Flocculated State

The dispersed particles in a suspension collide to
form flocculated particles. The collision rate is usually
expressed by a second order reaction (Eq. (7)) [7, 8]:

(7)

where k is the rate constant. This equation is easily
solved under the conditions of Cd = ni/nA at t = 0 and
Cd = nd/nA at t = t, where nd is the number of dispersed
particles (nd = niα). The integrated form is given by Eq. (8) :

(8)

From Eq. (8), α is expressed by Eq. (9):

(9)
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Fig. 1. A suspension model containing dispersed particles and
flocculated particles.
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where k1 is equal to k/nA. That is, the fraction of
dispersed particles is a function of settling time and
decreases at a longer time. Equation (9) is coupled with
Eqs. (1)-(5) to represent the activity and chemical potential
of particles in a suspension as a function of settling time
(Eqs. (10)-(14)):

(10)

(11)

(12)

(13)

(14)

Figure 2 shows the schematic relation of a and μ as a
function of time. The ad decreases from γ0 at t = 0 to 0
at t = ∞. On the other hand, the ag increases from 0 at
t = 0 to 1 at t = ∞. This change is accompanied by the
change in μg from −∞ at t = 0 to μg0 at t =∞. The important
note is that the collision of dispersed particles stops at a
critical time tc1 for Δμ = 0, because the equilibrium state
is achieved. The time tc1 required to reach the equilibrium

state is determined from Eq. (14):

(15)

The molar fraction of α at t = tc1 is also determined
from Eqs. (9) and (15) as follows :

(16)

(17)

Equation (16) is the same as Eq. (6). The chemical
potential of μd and μg at t = tc1 is given by Eq. (18):

(18)

When nik1 in Eq.(14) is substituted for nik1 in Eq. (15),
the Δμ value is expressed as a function of t/tc1 ratio
(Eq. (19)):

(19)

The Δμ value becomes Δμ < 0 at t < tc1 and Δμ = 0 at
t = tc1. No change of Δμ occurrs at t > tc1, because the
equilibrium state is achieved.

Particle Size Effect on the Phase Transition from 
Dispersed to Flocculated State

The fraction (α) of dispersed particles at time t depends
on the rate constant k1 in Eq. (9). The rate constant is
expressed by an Arrhenius equation Eq. (20) [7, 20]:

(20)

where k10 is the frequency factor and ΔGm1 represents
the activation energy for the migration of a dispersed
particle to another dispersed particle or to an adjacent
flocculated particle. The critical time tc1 for the phase
transition from the dispersed to flocculated state is
expressed as follows by the combination of Eqs. (15)
and (20) :

(21)

Figure 3 shows the energy difference of dispersed and
flocculated particles at t < tc1 and t = tc1. The dispersed
particles form a particle cluster when they have an energy
higher than the potential barrier, ΔGm1. Although μd of
dispersed particles is higher than μg of flocculated particles
at t < tc1, it is difficult to form particle clusters because of
a high potential barrier, resulting in a long tc1 time. For the
dispersion of flocculated particles, more energy (ΔGm1−Δμ)
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Fig. 2. Schematic relation of activity (a) and chemical potential (b)
of dispersed and flocculated particles as a function of settling time.
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is required at t < tc1. Once the equilibrium is reached
(Δμ = 0), the numbers of particles migrating for 1 second
in both the directions of dispersed → flocculated and
flocculated → dispersed become the same, indicating
constant numbers of dispersed and flocculated particles
in a suspension.

Equation (21) is transformed to Eq. (22) using the
basic relations of γ0/ni = (Vi/Vmax) (vi/Vi) = 4πr

3/
3Vmax, Δμ0 = ΔH0 − TΔS0 and ΔGm1 = ΔHm1 − TΔSm1

(H : enthalpy, S : entropy, T : temperature) :

(22)

In Eq. (22), the entropy difference (ΔS0) of dispersed
and flocculated particles at ad = ag = 1 should be close
to ΔSm1 of the dispersed and flocculated particles present
at t = t, leading to ΔSm1 − ΔS0≈0. That is, Eq.(22) is simply
expressed by Eq. (23):

(23)

where A has a constant value (ln(4π/3Vmaxk10)−ΔH0/RT).
Equation (23) indicates that (i) tc1 depends on particle
size and ΔHm1 (enthalpy for migration of a dispersed
particle) and (ii) tc1 becomes longer for a larger r and
for a higher ΔHm1 value.

Stability of Dispersed Particles

Colloidal processing needs well dispersed particles to
make a dense powder compact [12]. The stability of the
colloidal suspension is an important factor in actual
processing. The thermodynamic condition for stable
dispersed particles is given by Δμ/RT < 0 (μg < μd). In
this condition, we can get a colloidal suspension containing
well-dispersed particles rather than flocculated particles.
In particular, the difference of chemical potential (Δμ)

is large for a short settling time (fresh suspension) as
seen in Fig. 2 and Eq. (14). From Eq. (19), the following
relation is derived for tc1 > t > 1 second :

(24)

Equation (24) indicates that the suspension with a long
tc1 has a large difference of chemical potential at a
similar settling time. Therefore, −ln tc1 is a possible indicator
for the stability of dispersed colloidal particles. When ln
tc1 is large with a negative value, the suspension contains
more dispersed particles. From Eqs. (23) and (24), −ln
tc1 for a fresh suspension (ln t << ln tc) is expressed by
Eq. (25):

(25)

Figure 4 shows the schematic relation between ΔHm1/RT

value and ln r for Eq.(25). A large ΔHm1 provides a high
stability of the colloidal suspension. The critical ΔHm1 for
Δμ/RT = 0 increases linearly with decreasing ln r. This
relation suggests that the activation energy (ΔHm1) to
prevent the formation of a particle cluster by collision
of dispersed particles is a function of particle size and
should increase when the particle size becomes small.
For a similar ΔHm1 value, large particles are well dispersed
but small particles are flocculated.

Phase Diagram of One-Component Colloidal 
System

In section 5, we discussed the stability of a colloidal
suspension. For a fresh suspension (ln t << ln tc), the
stability factor, −ln tc, is approximated to Δμ/RT (See Eqs.
(19) and (25)). To make a stable dispersed suspension,
the ΔHm1 in Eq. (25) value is discussed in this section.
The ΔHm1 value for dispersed particles is an enthalpy to
make a particle cluster. This value can be calculated by
DLVO theory. Figure 5 shows the interaction energy (Ei)
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Fig. 3. Energy difference of dispersed and flocculated particles at
(a) t < tc1 (critical time for equilibrium) and (b) t = tc1. ΔGm1 represents
the activation energy for one particle to migrate to another particle. Fig. 4. Relation between particle size and enthalpy for the migration

of dispersed particles to form a particle cluster.
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as a function of distance between two dispersed particles.
The Ei value is a summation of the van der Waals attraction
energy (Ea) and the repulsive energy (Er) due to
overlap of the electrical double layer between two charged
particles. The maximum value of Ei (Ei(max)) depends on
the surface potential of dispersed particles when the
particle size and concentration of electrolyte of a
suspension are fixed. A certain Ei(max) corresponds to
a critical ΔHm1 value which is equal to RT(-A-3 ln r) in
Eq. (25). Once a critical ΔHm1/RT value for a particle
radius r1 is given, the other critical ΔHm1/RT value for a
different particle radius r2 is easily determined using
Eq. (26) derived from Eq. (25):

(26)

However, it is difficult to determine the theoretical A
value in Eq. (25), because two unknown parameters k10

and ΔH0 are included in the A value (See Eqs. (22) and
(23)). As a starting point, an experienced criterion of
ΔHm1(critical)/RT ≈ 15 was assumed for a particle of
1 μm diameter [10]. The Ei(max) was calculated for

many surface potential φ mV under the constant conditions
of an electrical double layer thickness = 100 nm, Hamaker
constant 10.7 × 10−20 J, atomic valence of electrolyte in
a suspension +1 and temperature 298 K. The detailed
Ea and Er equations are shown in our previous paper
[10]. Equaions (27), (28) and (29) represent for Ea, Er

for D (particle diameter) >> 1/κ (double layer thickness)
and Er for D << 1/κ, respectively : 

(27)

(28)

(29)

A(H) in Eq. (27) is the Hamaker constant and the value
of A(H) = 10.7 × 10−20 J for SiC particles was used in
present calculation. H is the distance between two particles,
k(B) the Boltzmann constant, ε the relative dielectric
constant of H2O (78.3), ε0 the permittivity of vacuum
(8.854 × 10−12 F/m), R the gas constant (8.314 J/mol K),
T the temperature, Z the charge number (assumed to be
+1) of the electrolyte and F the Faraday constant
(9.649 × 104 C/mol). The double layer thickness of 100 nm
was calculated for a typical concentration (10−5 mol/l) of
the electrolyte of Z = 1.

Figure 6 shows the calculated Ei(max)/RT value and
corresponding particle distance H(max) as a function of
surface potential φ for the particles of 1 μm diameter.
In this figure, the surface potential for the critical value
of ΔHm1/RT = Ei(max)/RT = 15 was determined to be
10.3 mV. The H(max) value was also determined to be
67 nm. A similar method was used to determine the
other critical φ and H(max) values for different particle
sizes. The critical ΔHm1/RT values calculated by Eq. (26)
are 17.1 for 500 nm diameter, 21.9 for 100 nm diameter,
22.6 for 80 nm diameter, 23.4 for 60 nm, 25.5 for 30 nm
diameter and 28.8 for 10 nm diameter. The critical ΔHm1/
RT value increases with decreasing particle size. Of course,
when a theoretical A value in Eq. (25) is determined,
we can discuss a more accurate particle size dependence
of the critical value ΔHm1/RT. Figure 7 shows, Δμ / RT

(≈ − ln tc for a fresh suspension) as a function of ΔHm1/
RT. The chemical potential of dispersed particles with φ
higher than φ0 (critical surface potential) in a fresh
suspension is higher than the chemical potential of
flocculated particles. The Δμ/RT (− ln tc) approaches 0
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Fig. 5. Schematic relation of the interaction energy between two
particles as a function of their distance. φ is a surface potential.

Fig. 6. Maximum value of interaction energy (a) and corresponding
particle distance (b) for 1μm particles as a function of surface potential.
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at a critical φ0 value. In the range φ < φ0, the chemical
potential of flocculated particles becomes higher than
that of dispersed particles. The thermodynamics in this
range is discussed more in section 8. That is, surface
potential of particles should be higher than φ0 to make
a well dispersed suspension. On the other hand, the H(max)
in Fig. 6 was converted to the initial concentration of
colloidal particles Vi (see section 2), using Eq. (30) for
random close packing model [21, 22]:

(30)

The H(max) value approaches 0 at Vi = 63.7 vol%.
As seen in Fig. 5, two dispersed particles within a
distance of 0 < H < H(max) have a strong tendency to
make a particle cluster because of the rapid decrease of
Ei to −∞ with decreasing H value. That is, the increasing
solid content of the well-dispersed colloidal suspension
(φ > φ0) leads to the consolidation of colloidal particles
(formation of a dense powder compact). Therefore, three
different phases are present in a one-component colloidal
system : a colloidal suspension containing well-dispersed
particles (Δμ/RT < 0, φ > φ0, H > H(max), named as
colloidal liquid), a dense powder compact consolidated
from well-dispersed particles (Δμ/RT < 0, φ > φ0, H = 0,
named as colloidal solid), a colloidal suspension containing
flocculated particles (Δμ/RT > 0, φ< φ0, named a flocculated
suspension). In the distance range of 0 < H < H(max),
two phases (colloidal liquid and colloidal solid) coexist.
Based on the above discussion, the phase diagram of a
fresh colloidal suspension (ln t << ln tc) was constructed
for many particle sizes.

Figure 8 shows the colloidal phase diagram of a fresh
suspension containing 1 μm particles. The phase transition
from a colloidal liquid to a flocculated suspension occurrs
at φ = 10.3 mV. The flocculated suspension formed consists
of two phases of flocculated colloidal particles and an
aqueous solution. Therefore, the phase transition at φ = φ0

is accompanied by the phase separation from one phase
(colloidal liquid) to two phases (flocculated particles
and aqueous solution). On the other hand, the Vi range
for the mixture of colloidal liquid and colloidal solid
becomes narrow at a higher φ value (φ > φ0). The phase
diagram suggests a concentrated suspension of 55 vol%
particles may be prepared at φ > 60 mV. The phase diagram
obtained is essentially same as the phase diagrams reported
by Aksay and Kikuchi [4, 13], and Russel [14]. The
thermodynamics of colloidal suspension discussed is drawn
in one phase diagram. The phase diagram of Fig. 8 for
a fresh suspension was compared with the metastable
phase diagram in our previous papers [9, 11, 12]. When
the definition of the colloidal state in the previous paper
is changed from colloidal solid to colloidal solid + colloidal
liquid, and from colloidal solid + colloidal liquid to colloidal
liquid, both the phase diagrams are essentially equivalent.
Figure 9 compares the colloidal phase diagrams for the
particle size range from 1 μm to 10 nm. The critical surface
potential φ0 increases with decreasing particle size. This
result has been discussed in section 5 and related to the
particle size dependence of the critical ΔHm1 value (Eqs. (25)
and (26)). In an actual processing, a higher φ is required
for nanometre-sized particles to make a well-dispersed
fluid suspension. The Vi range for the mixture of colloidal
liquid plus colloidal solid becomes wide with decreasing
particle size. In this Vi range, it is difficult to change the
position of particles, because the distance between two
particles is substantially shorter than the particle size. The
above comparison suggests the consolidation of fine particles
results in a low packing density.
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Fig. 7. Relationship between Δμ/RT and ΔHm/RT for the phase
transition from dispersed to flocculated particles and from flocculated
to dispersed particles. See Eqs. (25) and (49) in the text for the
criterion of the dispersion of colloidal particles.

Fig. 8. Colloidal phase diagram of one-component system of
1 μm particles.
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Change of the Flocculated to the Dispersed State

In this section, we discuss the dispersion of flocculated
particles at φ < φ0. The number of particles released from
flocculated particles per unit area for 1 second is expressed
by Eq. (31) [23]:

(31)

where k2 is the rate constant. Since Cd and Cg are equal
to Vi α / vi nA and Vi (1 − α)/vi nA, respectively, Eq. (31) is
transformed to Eq. (32):

(32)

Equation (32) is integrated under the consolidations of
α = 0 at t = 0 and α = α at t = t. The solved form is given
by Eq. (33):

(33)

The molar fraction of dispersed particles is expressed by
Eq. (34):

(34)

The α value increases from 0 at t = 0 to 0.5 at t = ∞. The
activity of dispersed and flocculated particles is as follows :

(35)

(36)

The chemical potential of dispersed and flocculated particles
is expressed by Eqs. (37) and (38), respectively :

(37)

(38)

Equation (39) represents the difference of chemical potential
(Δμ = μg − μd) :

(39)

Figure 10 shows the time dependence of activity and
chemical potential of dispersed and flocculated particles.
The ag value decreases from 1 at t = 0 to 0.5 at t = ∞.
The ad increases from 0 at t = 0 to γ0/2 at t = ∞. The
corresponding μg decreases from μg0 at t = 0 to μg0 − RTln
2 at t = ∞. The μd is −∞ at t = 0 and increases with an
increase of settling time. However, Δμ becomes 0 at t = tc2

as seen in Fig. 10(b), and no change of μg and μd occurrs
at t ≥  tc2. The tc2, μd, μg, and αc for Δμ = 0 are given by
Eqs. (40)-(42), respectively:

(40)

(41)

(42)

The molar fractions of flocculated (1 − αc) and dispersed
particles (αc) at t = tc2 are dominated by γ0 and Δμ0. The
difference of Δμ (Eq. (39)) is also expressed by Eq. (43)
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Fig. 9. Comparison of colloidal phase diagrams for particle size
range from 1 μm to 10 nm.

Fig. 10. Activity (a) and chemical potential (b) of dispersed and
flocculated particles as a function of settling time.
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using the ratio of t/tc2:

(43)

The thermodynamic condition for stable flocculated
particles is Δμ/RT > 0 (μg > μd). Under this condition, it
is difficult to get a well-dispersed suspension. Equation
(39) is analyzed for the condition Δμ/RT > 0 and the
relation expressed by Eq. (44) is reached:

(44)

The rate constant k2 is expressed by Arrhenius equation
(Eq.(45)) :

(45)

Combination of Eqs.(44) and (45) gives the relation of
Eq.(46) :

(46)

Figure 11 shows the energy difference of flocculated
and dispersed particles at t < tc2 and t = tc2. The flocculated
particles can be released when the bond energy (ΔGm2)
between particles is decreased. The corresponding critical
ΔHm2 is RT[ln(2k20exp(ΔSm2/R))−lnln((β+1)/(β−1))] for
a fresh suspension (ln t~0) in Eq.(46). Although Δμ / RT

is plus at t < tc2, the high bond energy prevents the release
of flocculated particles and gives the long stability of the
flocculated suspension. The difference of stability of
dispersed and flocculated suspensions is well understood
by the comparison of Figs. 3 and 11. The stability of
dispersed particles in Fig. 3 can be increased by increasing
ΔGm1. This process is controlled by increasing the surface
potential (φ) of particles (Fig. 7). On the other hand, the
increase of ΔHm2 leads to the high stability of flocculated
particles (Fig. 11). Unfortunately, the relation between

ΔHm2 and φ has not been well understood at φ < φ0. It
may be difficult to disperse the flocculated particles at
t < tc2 by controlling the surface potential of particles.
When the surface potential of flocculated particles is
suddenly increased to φ > φ0, the chemical potential of
dispersed and flocculated particles shifts to the state in
Fig. 3(a). In this case the activity of flocculated particles
approaches 0, indicating the phase transition from flocculated
to dispersed particles (Fig. 2).

The relation between ΔHm2/RT and Δμ/RT is analyzed
for a fresh suspension (ln t << ln tc2). The logarithm
term in Eq. (43) can be approximated as follows:

(47)

Equation (47) is substituted for Eq. (43) to yield Eq. (48):

(48)

Equation (48) was coupled with Eq. (46) to give the
relation of Eq. (49) for the conditions of Δμ/RT > 0 and
ln t << ln tc2 :

(49)

where B is 2k20 exp (ΔSm2/R) (See Eq. (46)). Figure 7
shows the relation of Δμ/RT and ΔHm/RT for the analysis
of section 3 (dispersed → flocculated) and section 8
(flocculated→ dispersed). At Δμ/RT = 0, both the enthalpy
of ΔHm1 in Eq.(25) and ΔHm2 in Eq.(49) becomes equal
(Eq. (50)) :

(50)

Equation (50) indicates that (i) a critical ΔHm2 is equal
to a critical ΔHm1 at Δμ = 0 and (ii) a critical ΔHm2 can
be a function of particle size because ΔHm1 depends on
particle size and (iii) a critical ΔHm2 is higher for smaller
particles. That is, a higher energy is needed to disperse
the flocculated particles of smaller size. Since we have
analyzed the critical ΔHm1 as a function of particle size
in section 6, those values are equal to the critical ΔHm2

values at Δμ / RT = 0

Packing Behavior of Dispersed and Flocculated 
Particles

Based on the thermodynamics of colloidal suspensions,
we discuss the packing behavior of colloidal particles.
Figure 12 shows the schematic phase diagram and the
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chemical potential of dispersed and flocculated particles
in a fresh colloidal suspension with a small value of k1

or k2 (Eqs. (9) and (34)). The μg of flocculated particles
at the compositions A and D (φ > φ0) is −∞ (ag~0) and
the μd of dispersed particles at the composition A and
D is −∞ (ad~0) at φ < φ0. The increase of particle content
from point A to D causes the increase of μd as seen in
Fig. 12 (b). In the particle content range above the
composition of the liquidus line (point E), colloidal
solid and colloidal liquid coexist. However, the distance
between two particles in this composition is very small
as compared with the particle size, suggesting the formation
of a dense powder compact at the liquidus line. That is,
the particle content of the liquidus line is interpreted to
be a critical packing density of colloidal particles. Further
densification in the colloidal solid range corresponds to
the disorder-order transformation (crystallization of randomly
close-packed particles) [4, 5, 14].

Figure 13 shows the critical packing density determined
from the liquidus line at 100 mV (dispersed particles) and
at φ0 mV (solidius lines) of surface potential as a function
of particle size (See Fig. 8). The packing density of the
dispersed particles, determined from the phase diagram,
decreases from 58 % at 1000 nm to 30% at 10 nm. In the
particle size range from 100 to 10 nm, the decrease of the
density is significant. However, the packing density at φ = φ0

is not sensitive to the particle size and is in the range
from 26 to 35 vol%. That is, a porous powder compact
is formed. Figure 13 also shows the packing density of
ceramic particles with a size of 24-800 nm. The ceramic

suspension of 5-20 ml was consolidated by a developed
pressure filtration apparatus under a pressure of 19 MPa
or using a gypsum mold (suction pressure : 50-100 kPa)
[24]. In the experiment, colloidal suspensions at 20-48 mV
of zeta potential and at near the isoelectric point (flocculated
particles) were consolidated. The detailed experimental
procedure is reported in our papers [12, 24-27]. As seen
in Fig. 13, the packing densities of the powder compacts
consolidated by pressure filtration (~19 MPa) of the particles
with high and low zeta potentials are very close to the
compositions of liquidus lines at 100 mV of surface
potential. The surface potential of the particles smaller than
100 nm does not affect the packing density. This result
is explained by the shift of the solidus line to a higher φ
with decreasing particle size. The colloidal suspensions
for the particles of 20-70 nm were in a flocculated state
at the given zeta potentials. In the submicrometre range,
the packing density is influenced by the surface potential
and became higher than the compositions of liquidus lines.
This result may reflect the crystallization of highly dispersed
particles during the consolidation.

The phase diagram constructed is effective to predict
the packing behavior of colloidal particles. When the
surface potential of particles is decreased from point A
to B in Fig. 12, a stable flocculated suspension is formed.
According to the phase diagram Fig. 12 (a), the flocculated
suspension consists of a mixture of solution and flocculated
particles with a packing density of 0.637. The increase
of particle content from point B to C at φ < φ0 leads to
the increased fraction of flocculated particles. This change
of the structure provides finally the dense compact with

Fig. 12. Colloidal phase diagram (a) and chemical potential (b) of
dispersed (A, D) and flocculated particles (B, C) in a fresh suspension.

Fig. 13. Packing density of nanometre-sized ceramic particles as a
function of particle size. YSZ HAp, and M represent yttria-stabilized
zirconia, hydroxyapatite and mullite, respectively. The seven kinds of
colloidal particles were consolidated by pressure filtration at 19 MPa
of applied pressure or using gypsum mold.
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Vmax of packing density. That is, it is possible to make
a dense powder compact when the solid content of the
flocculated suspension can be increased. The good agreement
between the compositions of liquidus lines at 100 mV of
surface potential and the experimental packing densities
for the flocculated suspensions under a pressure of 19 MPa
indicates that (i) the application of external force can
increase the particle content of the flocculated suspension,
and (ii) the final packing density of the flocculated
particles is the same as the density corresponding to the
liquidus lines at φ > φ0. As seen in Fig. 13, the packing
density of the submicrometre-sized alumina powders
consolidated by filtration through a gypsum mold is also
close to the density predicted from the phase diagram.
Application of a high pressure (~19 MPa) during the
consolidation enhances the elimination of solution and
the disorder → order transformation of particles, causing
the increase of packing density. A similar consolidation
behavior is observed for 80 nm mullite powder with a 30 mV
zeta potential. The packing density of this powder is
35 vol% at a low suction pressure (50-100 kPa) but it is
possible to increase the density to 49 vol% by increasing
the applied pressure. On the other hand, a low packing
density of 16-26 vol% was measured for 80-350 nm
particles at a 0 mV zeta potential under a low suction
pressure. This result is well explained by the density curve
determined from the solidus line of the phase diagram.
Apparently, the flocculated particles can be consolidated
to a high packing density predicted from the phase diagram
under a high consolidation pressure. As discussed above,
the important processes to increase packing density are the
elimination of solution and crystallization of particles during
consolidation, which depend on particle size, surface potential
and applied pressure.

Conclusions

This paper has defined the activity and chemical potential
of dispersed (μd) and flocculated (μg) particles of a one-
component colloidal system. The difference of chemical
potential (Δμ = μg − μd) for dispersed and flocculated
particles provides a critical enthalpy (ΔHm1) for the formation
of a particle cluster, which is equal to a certain maximum
value of the interaction energy as a function of distance
of two particles in the DLVO theory. The combination of
thermodynamics of colloidal suspensions and the DLVO
theory succeeded in constructing the colloidal phase diagram
in a map of surface potential (φ) and solid content of particles
of 10-1000 nm diameters. The critical enthalpy (ΔHm1)
corresponds to the solidus line (φ = φ0) of the phase diagram
giving Δμ = 0. The φ0 value shifts to a higher value with
decreasing particle size. The particle composition of
liquidus line is also related to the packing density after
consolidation of dispersed particles. This phase diagram
can predict the dependence of packing density on particle
size. The experimentally-determined packing density
agreed with the prediction from the phase diagram. The

thermodynamics of the dispersion of the flocculated particles
is also discussed. The packing behavior of a flocculated
suspension at near the isoelectric point under a compressive
pressure is well explained by the colloidal phase diagram.
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