O U R N A L O F

Ceramic Processing Research

Comments on the high temperature oxidation characteristics of Ti₃SiC₂ in air

Thuan Dinh Nguyen^a, Jung-Ho Choi^a, Sang-Whan Park^b and Dong-Bok Lee^{a,*}

^aSchool of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746, Korea ^bMultifunctional Ceramic Research Center, KIST, Seoul 136-791, Korea

The high temperature oxidation characteristics of Ti_3SiC_2 have been studied extensively before. However, we believe that there are still the ambiguous points concerning the scale structure and oxidation mechanism of Ti_3SiC_2 . Hence, the oxide scales formed, the distribution and roles of Ti, Si and C in the scale, and the oxidation mechanism are discussed based on the results obtain from this and previous studies. In this study, Ti_3SiC_2 compounds were produced via a powder metallurgical process, oxidized between 900 and 1200 °C in air for up to 100 h, and the oxidation characteristics are discussed.

Key words: Ti₃SiC₂, Titanium, Silicon, Carbon, Oxidation.

Introduction

 Ti_3SiC_2 is a remarkable material for a myriad of applications, because of its unique combination of metallic and ceramic properties [1]. Like metals, it has excellent electrical and thermal conductivities, high toughness, a high fatigue-crack growth threshold, low hardness, machinability, and high thermal-shock resistance. Like ceramics, it displays excellent chemical resistance, high Young's modulus, high temperature strength, and a high melting point. It is usually synthesized via powder metallurgical routes such as hot pressing or hipping. In order to use Ti_3SiC_2 as high-temperature structural components, the oxidation behavior of Ti_3SiC_2 was studied extensively at temperatures ranging from 900 °C to 1500 °C in air [1-17].

Most of these oxidation studies were conducted using thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectrometry (EDS). However, to accurately trace the carbon in Ti_3SiC_2 during oxidation, it is imperative to utilize electron probe microanalysis (EPMA), because of its ability to detect carbon. Yet, the previous oxidation studies on Ti_3SiC_2 still need further discussion, owing to an inadequate interpretation of experimental data. The aim of this study is to critically discuss the high-temperature oxidation characteristics of Ti_3SiC_2 proposed by other researchers, based on this and previous studies.

*Corresponding author: Tel:+82-31-290-7355

Fax: +82-31-290-7371

Experimental

Powders of TiC_{0.67} (< 45 μ m) and Si (< 70 μ m) were mixed in a molar ratio of 3 to 1 in a SPEX shaker mill for 10 minutes, and hot pressed at 1400 °C under an Ar pressure of 25 MPa for 90 minutes to prepare a bulk Ti₃SiC₂ sample with dimensions of 19 mm $\phi \times 10$ mm. After being cut into pieces $10 \times 5 \times 5$ mm³ in size, the Ti₃SiC₂ specimens were ground to a 1000 grit finish, ultrasonically cleaned in acetone and methanol, and oxidized isothermally at 900, 1000, 1100 and 1200 °C in atmospheric air for 100 h. Following oxidation, the specimens were investigated by means of scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and EPMA.

Results and Discussion

It is known that the oxidation of Ti_3SiC_2 results in the formation of rutile-TiO₂, SiO₂, and CO [2, 4, 7, 10] or CO₂ [3, 8, 11, 13], as shown in eq. (1).

$$Ti_3SiC_2(s) + O_2(g) \rightarrow TiO_2(s) + SiO_2(s) + (CO(g) \text{ or } CO_2(g))$$
(1)

In reality, no one has proved the formation of CO and CO₂, which would be experimentally difficult. The SiO₂ formed was amorphous (Barsoum et al. [2]; oxidation at 900-1200 °C for 10 h, Li et al. [8]; oxidation at 1000-1500 °C for 20 h, Chen et al. [10]; oxidation at 800-1300 °C for 48 h, Racault et al. [13]; oxidation at 850-1050 °C for 6 h), tridymite (Sun et al. [4]; oxidation at 900-1300 °C for 20 h), or cristobalite (Barsoum et al. [2]; oxidation at 1240-1400 °C for 12 h, Gao et al. [11]; oxidation at 1100-1300 °C for 30 h, Racault et al. [13]; oxidation at 1050-1250 °C for 6 h). It is seen that, even

E-mail: dlee@yurim.skku.ac.kr

Fig. 1. XRD pattern of oxide scale formed on Ti_3SiC_2 after oxidation for 100 h in air. (a) scale formed at 900 °C, (b) outer scale formed at 1000 °C, (c) inner scale formed at 1000 °C, (d) outer scale formed at 1200 °C, (e) inner scale formed at 1200 °C.

under the same oxidation conditions, SiO₂ has different structures. This discrepancy may have originated from the different microstructure, density and purity of each sample tested. Our XRD tests for the oxidized specimens indicated that the SiO₂ formed at 900-1100 °C for up to 100 h was amorphous. For example, rutile-TiO₂ and amorphous SiO₂ formed on the Ti₃SiC₂ matrix, as shown in Fig. 1(a). In Fig. 1(b), Ti₃SiC₂ was not visible, because the X-rays could not penetrate beyond the oxide scale. Hence, the inner scale was X-rayed after grinding off the outer TiO_2 scale, as shown in Fig. 1(c). Here, rutile-TiO₂ and the Ti₃SiC₂ matrix were detected, because the SiO₂ formed was amorphous. The crystallization of SiO_2 occurred when Ti_3SiC_2 was oxidized at 1200 °C for 100 h, as shown in Fig. 1(d) and (e). The outer TiO_2 scale was detected in Fig. 1(d), whereas the inner (TiO₂, SiO₂)-mixed scale was detected in Fig. 1(e). However, when Ti₃SiC₂ was oxidized at 1200 °C for 20 h, only rutile was detected thoughout the scale. Hence, it is suggested that the SiO_2 that formed below the outer TiO₂ scale transformed from amorphous into cristobalite, as oxidation progressed at 1200 °C.

Gao et al. [14] proposed that Ti₃SiC₂ tended to

decompose above 600 °C in air, according to the eq. (2)

$$Ti_3SiC_2 \rightarrow TiC_x(s) + Si(s)$$
 (2)

They explained that, above 1100 °C, Ti₃SiC₂ decomposed severely owing to the oxidation of $TiC_x(s)$ and the vapor phase reaction; $Si(g)+O_2 \rightarrow SiO(g)$. However, their explanation is based on thermogravimetricdifferential thermal analyses (TG-DTA), which cannot see $TiC_x(s)$ and Si(s), which will be TiO_2 and SiO_2 , respectively. It is known that Ti₃SiC₂ decomposes to $TiC_{x}(s)$ and Si(s or g) at temperatures of 1300-1600 °C under an inert atmosphere or vacuum [11, 13, 15]. This can happen because Ti₃SiC₂ has strong Ti-C bonds and weak bonds between the Si layers and Ti₃C₂ octahedrons. However, the reaction (2) is unlikely to occur in air, because Ti₃SiC₂ would be oxidized readily to form the thermodynamically stable TiO₂ and SiO₂. Furthermore, the reaction proposed by Gao et al. requires the following eq. (3).

$$Si(s)=Si(g)$$
 (3)

For eq. (3), the standard free energy changes, ΔG° , are given as follows;

 $\Delta G^{\circ} = -RT \ln (P_{Si(g)}/a_{Si(s)})_{eq} = -RT \ln (P_{Si(g)})_{eq} = 276,224$ (J at 900 °C), 232,781 (J at 1200 °C)

Thus, the equilibrium vapor pressure of Si(g), $P_{Si(g)}$, at 900 and 1200 °C can be calculated as 5×10^{-13} and 5×10^{-9} atm, respectively. These low vapor pressures indicate that the amount of Si(g) that will form is too small to account for the amount of SiO₂ that was present in the scale. Ti₃SiC₂ would be oxidized according to eq. (1), without forming TiC_x(s) and Si(s). Since TiC_x(s) has poor oxidation resistance and Si is an active element, they cannot be precursors of the oxide scale.

On the other hand, Yang et al. [12], based on the Ti-Si-O phase diagram calculated by Lutha [18], suggested that TiO₂ should form preferentially when a thermodynamic equilibrium has been established between Ti₃SiC₂ and the gas phase at the their oxidation test temperature of 1000 °C. However, Lutha studied the oxidation of the Ti-Si binary system at 800 °C. Moreover, the activities of Ti and Si in Ti₃SiC₂ are still unknown. Hence, Yang et al.'s explanation is wrong. One cannot tell which oxide would form preferentially between TiO₂ and SiO₂ because of the lack of thermodynamic data.

Previously, Feng et al. [15] measured the activation energy for the oxidation of Ti_3SiC_2 (Q=312.5 kJ/mol in the range 950-1100 °C) from the weight gain versus oxidation time curves. However, they could not explain the physical meaning of the Q value from the diffusion process though the TiO₂ and SiO₂ oxides. Therefore, they suggested that another unknown step might be involved in the oxidation process of Ti_3SiC_2 . At least, they should have taken into account the vaporization of

Fig. 2. Thickness of the oxide layer formed on Ti_3SiC_2 after oxidation at 900-1200 °C for 5-100 h in air.

carbon to explain the oxidation of Ti_3SiC_2 . Other factors that can affect the oxidation rates, and, as a resultant, the Q value are the oxidation conditions (i.e., time/temperature/atmosphere), the microstructure, the sample purity and density. In particular for Ti_3SiC_2 , no samples were 100% pure and dense [2, 4, 7, 8, 11]. The most frequently found impurity is TiC [2, 14, 15], which increases the oxidation rates and decreases the activation energy, Q [2,5,10]. SiC is another impurity in Ti_3SiC_2 [3].

The oxidation kinetics of Ti_3SiC_2 were generally evaluated based on the weight gain versus oxidation time curves using thermogravimetric analyzers (TGA) [3-5, 8, 10, 11, 13-16]. It is generally suggested that the air-oxidation resistance of Ti_3SiC_2 is acceptable up to 1050-1100 °C owing to the formation of dense scales [5, 9, 13, 14]. However, Radhakrishnan et al. [16] questioned the potential utility of Ti_3SiC_2 at elevated temperatures in air, because of big weight gains at their oxidation test temperature of 1000 °C. This difference in opinion came from the fact that the oxidation kinetics

Table 1. Thickness of the scale formed on pure Ti, TiAl-2Cr-2Nb, and SUS 430 after oxidation at 900-1200 °C for 100 h in air

Sample	µm at 900 °C	µm at 1000 °C	µm at 1100 °C	µm at 1200 °C
Ti	630	745	1000	2525
TiAl-2Cr-2Nb	2.8	12	40	980
SUS 430	13	25	145	523

of Ti₃SiC₂ are strongly influenced by the impurities, density, and also by the vaporization of carbon that lowers the weight gain curves. This vaporization may be one of the reasons for the unusual TGA results obtained by Racault et al. in air [13]. They found that the weight gain obtained at 1150 °C is lower than that obtained at 1050 °C. In this study, the oxidation resistance of Ti₃SiC₂ was evaluated by measuring the scale thickness, as shown in Fig. 2. For comparison, Ti alloy (99.9% pure), TiAl-2Cr-2Nb intermetallic compound (Ti-47Al-2Cr-2Nb, in wt.% hereafter), and stainless steel (SUS 430; Fe-17Cr alloy) were also tested, and their scale thicknesses are listed in Table 1. As the oxidation progressed, the scale thickened, as expected in Fig. 2 and Table 1. Ti₃SiC₂ displayed better oxidation resistance than pure Ti, because of the SiO₂ existing in the inner oxide scale. But, Ti₃SiC₂ displayed worse oxidation resistance than TiAl-2Cr-2Nb and SUS 430, due partly to the evaporation of carbon that disrupts the continuity of the oxide layer. However, it is noted that TiAl-2Cr-2Nb oxidizes rapidly at 1200 °C.

Figure 3 shows the SEM morphology and EDS spectra of the surface scale formed on Ti_3SiC_2 . Numerous, fine rutile crystallites were seen in the area 'X' (Fig. 3(a) and (b)). But, such small crystallites were not visible at the given magnification in the area 'Y' (Fig. 3(a)). Oxide grains in this area were exceedingly small due mainly to the simultaneous growth of TiO₂ and SiO₂

Fig. 3. Oxide scale formed on Ti_3SiC_2 after oxidation for 100 h in air. (a) SEM top view at 900 °C, (b) EDS spectrum of area X, (c) EDS spectrum of area Y, (d) SEM top view at 1000 °C, (e) EDS spectrum of (d), (f) SEM top view at 1100 °C, (g) SEM top view at 1200 °C.

Fig. 4. EPMA analysis on the scale formed on Ti_3SiC_2 after oxidation at 1100 °C for 20 h in air. (a) cross-sectional image, (b) Ti map, (c) Si map, (d) carbon map, (e) oxygen map.

(Fig. 3(c)). The inhomogeneous nucleation of the surface oxides is due mainly to the anisotropy of the layered matrix grains. It is noted that the standard free energies of formation of oxides per mole O_2 (ΔG_f^{o}), for example at 1000 °C, are as follows [19]; TiO = -842 (kJ), SiO₂= -682 (kJ), CO=-453 (kJ), and CO₂=-396 (kJ). To form TiO₂, TiO should form first. Although the activities of Ti and Si in Ti₃SiC₂ are unknown, the large amount of Ti in Ti₃SiC₂ and highly negative ΔG_f^o value of TiO may imply that Ti is more active than Si in Ti_3SiC_2 , favoring the easier formation of TiO₂ when compared to SiO₂. Rutile progressively grew to coarse oxide grains, as the oxidation temperature increases, covering the oxide surface (Fig. 3(d)-(g)). In Fig. 3(g), TiO₂ has grown into the characteristic pillar-like rutile crystals. Since the lattice defect concentration of the nonstoichiozmetric TiO₂ is high, TiO₂ grows much faster than the highly stoichiometric SiO₂. Clearly, TiO₂ cannot act as an effective barrier to oxidation. Previously, Li et al. [7] indicated that the formation of a dense TiO_2 film on the surface acted as a diffusion barrier that retarded the diffusion of oxygen below 1300 °C. However, the oxidation resistance of Ti₃SiC₂ would depend mainly on the continuity and compactness of not TiO₂ but SiO₂.

It is generally accepted that the oxidation of Ti_3SiC_2 from 900 °C up to 1500 °C in air results in the formation of a duplex scale that consists of an outer rutile-TiO₂ layer and an inner (TiO₂,SiO₂)-mixed layer [2-4, 8, 10-12, 15, 16]. Figure 4 shows the cross-sectional images and the corresponding EPMA mappings of Ti_3SiC_2 after oxidation at 1100 °C for 20 h. There is negligible carbon in the oxide scale, owing to the escape of C as CO or CO₂ into the air. Around the interface of the outer rutile-TiO₂ layer and the inner (TiO₂,SiO₂)-mixed layer, microscopic voids existed (Fig. 4(a)).

Figure 5 shows the cross-sectional images and the corresponding EPMA line profiles of Ti_3SiC_2 after

oxidation at 1100 °C for 100 h. The overall scale morphology and elemental distribution of Fig. 5 did not differ from those of Fig. 4. Voids were seen below the outer rutile-TiO₂ layer. In particular, an array of voids was seen at the interface between the outer TiO₂ layer and the inner (TiO₂,SiO₂)-mixed layer in Fig. 5. According to Li et al. [8, 9], these voids would diffuse into both the inner layer and the outer layer, leading to the formation of a porous oxide layer. It appears as though they confused voids with vacancies. Vacancies can move according to their concentration gradient. However, the

Fig. 5. EPMA analysis on the scale formed on Ti_3SiC_2 after oxidation at 1100 °C for 100 h in air. (a) cross-sectional image, (b) line profiles of Ti, Si, carbon, and oxygen.

fact that voids were formed indicates that favorable conditions were established for the accumulation of vacancies. Voids would tend to keep growing, once they were formed, as can be seen in Fig. 4 and 5. The reverse reaction, that is, the dissipation of voids suggested by Li et al. [8, 9] would not occur under normal oxidation conditions. The formation of the porous oxide layer in the later stage of oxidation is considered due to the increased extent of oxidation, which leads to the nucleation and growth of more voids. As the oxidation progresses, the outward diffusion of Ti continuously accumulates Kirkendall voids around the interface of the outer TiO₂ layer and the inner (TiO₂,SiO₂)-mixed layer. Also, voids continuously grow owing to the ensuing escape of carbon. At the same time, the anisotropic, fast growth of TiO₂ would accentuate the mismatch in volume expansion between TiO₂ and SiO₂, facilitating the formation of voids.

On the other hand, Feng et al. [15] found colonies of titanium silicide, probably TiSi2, in and around the oxide scale, when Ti₃SiC₂ was oxidized at 1100 °C for 100 minutes in air. However, this is an exceptional case, because such TiSi2 colonies were not found in other oxidation studies. Recently, Chen and Zhou [17] found Ti₅Si₃ at the interface of the oxide scale and the $Ti_3Al_{1-x}Si_xC_2$ matrix, which is the mixture of Ti_3SiC_2 and another isostructural Ti₃AlC₂ compound. This was attributed to the precipitation of Ti₅Si₃ from the Ti₃Al_{1-x}-Si_xC₂ matrix during oxidation. Similarly, TiSi₂ colonies may have precipitated from the Ti₃SiC₂ matrix. Another possibility for the TiSi₂ colonies may be due to the heterogeneity of their powder metallurgically synthesized sample. The extremely oxidation-resistant TiSi₂, once formed, would resist oxidation [20] and could therefore stay within the oxide scale of Ti₃SiC₂.

Sun et al. [4, 5] previously reported that there was a discontinuous SiO₂ layer inside the coarse, outer TiO₂ layer when Ti₃SiC₂ was oxidized at temperatures between 1100 and 1200 °C in air. No such discontinuous SiO_2 layer was observed in other studies [7, 8, 11, 14]. The presence of SiO_2 inside the outer TiO_2 layer may occur via the following 2 routes. Firstly, Si ions also diffuse outwards to a certain extent, as Ti ions do to form the outer TiO₂ layer. Secondly, Si ions were pushed upwards toward the surface by the outwardly moving Ti ions. It is worthwhile noting that Si ions in SiO₂ are relatively immobile, because of the higher bonding energy of Si⁺⁴-O (443 kJmol⁻¹) as compared with Ti⁺⁴-O (305 kJmol⁻¹) [21]. Hence, the second route is the more likely occur, resulting in the incorporation of some SiO₂ particles inside the outer TiO₂ layer.

Conclusions

 Ti_3SiC_2 oxidized according to the eq.; $Ti_3SiC_2+O_2 \rightarrow$

 $TiO_2+SiO_2+(CO \text{ or } CO_2)$, without forming $TiC_x(s)$ and Si(s). Ti_3SiC_2 displayed better oxidation resistance than pure Ti, but worse oxidation resistance than TiAl-2Cr-2Nb and SUS 430. The oxidation resistance of Ti_3SiC_2 depends mainly on the continuity and compactness of not rutile- TiO_2 but SiO_2 , which crystallized into cristobalite after oxidation at 1200 °C for 100 h. Microscopic voids formed below the outer TiO_2 layer, which grew to pillar-like grains. Carbon escaped from Ti_3SiC_2 during oxidation.

Acknoledgments

This work was supported by the RA scholarship of Sungkyunkwan University, Korea.

References

- 1. M.W. Barsoum, Prog. Solid St. Chem. 28 (2000) 201-281.
- 2. M.W. Barsoum, T. El-Raghy, and L.U.J.T. Ogbuji, J. Electrochem. Soc. 144[7] (1997) 2508-2516.
- M.W. Barsoum, L.H. Ho-Duc, M. Radovic, and T. El-Raghy, J. Electrochem. Soc. 150[4] (2003) B166-b175.
- Z. Sun, Y. Zhou, and M. Li, Corros. Sci. 43 (2001) 1095-1109.
- Z. Sun, Y. Zhou, and M. Li, Acta Mater. 49 (2001) 4347-4353.
- Z. Sun, Y. Zhou, and M. Li, Oxid. Met. 57[5] (2002) 379-394.
- S.B. Li, J.X. Xie, L.T. Zhang, and L.F. Cheng, Mater. Lett. 57 (2003) 3048-3056.
- S.B. Li, L.F. Cheng, and L.T. Zhang, Mater. Sci. Eng. A341 (2003) 112-120.
- S.B. Li, L.F. Cheng, and L.T. Zhang, Comp. Sci. Tech. 63 (2003) 813-819.
- T. Chen, P.M. Green, J.L. Jordan, J.M. Hampikian, and N.N. Thadhani, Metall. Mater. Trans. 33A (2002) 1737-1742.
- 11. N.F. Gao, Y. Miyamoto, and D. Zhang, Mater. Lett. 55 (2002) 61-66.
- 12. S.L. Yang, Z.M. Sun, H. Hashimoto, Y.H. Park, and T. Abe, Oxid. Met. 59[1] (2003) 155-165.
- C. Racault, F. Langlais, and R. Naslain, J. Mater. Sci. 29 (1994) 3384-3392.
- N.F. Gao, Y. Miyamoto, and D. Zhang, J. Mater. Sci. 34 (1999) 4385-4392.
- A. Feng, T. Orling. and Z.A. Munir, J. Mater. Res. 14[3] (1999) 925-939.
- R. Radhakrishnan, J.J. Williams, and M. Akine, J. Alloys Comp. 285 (1999) 85-88.
- 17. J.X. Chen and Y.C. Zhou, Oxid. Met. 65[1] (2006) 123-135.
- 18. K.L. Lutha, Oxid. Met. 36[5] (1991) 475-490.
- I. Barin, in "Thermochemical Data of Pure Substances" (VCH, Weinhein, Germany 1989).
- S. Melsheimer, M. Fietzek, V. Kolarik, A. Rahmel, and M. Schuetze, Oxid. Met. 47[1] (1997) 139-203.
- W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, in "Introduction to Ceramics" (John Wiley & Sons, NY, 1976) p. 99.