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The Charge Distribution method is the latest development of the Pauling’s idea of bond strength and is based on a geometrical
analysis of the coordination polyhedra. Differently from other methods extending Pauling’s approach, it uses only one
empirical parameter independent from the experimental conditions, and can thus be applied equally well to structures at
ambient and at extreme conditions. The kernel of the method consist in the calculation of the Effective Coordination Number
(ECoN), a non-integer number that gives the weighted number of anions coordinating each cation, and the distribution of the
formal oxidation numbers among all chemical bonds through the corresponding fractions of ECoN. The applications include:
1) structure validation; 2) analysis of the ordering pattern of elements substituting isomorphously; 3) analysis of the correlation
between properties and structure, through the so-called Over-Under-Bonding effects. Examples are discussed in details.
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Introduction

The understanding of the basic features of inorganic
structures largely benefits of the well-known Pauling’s
rules [1]. Of these, the most extensively used is the
second rule, or Electrostatic Valence Principle, which
states that the sum of the electrostatic bond strengths
s(ij) calculated for the M-A bonds formed by the r-th
anion A(r) with the cations M(ij) − where i identifies
the atomic species and j the crystallographic type − is
equal to the charge of the anion, q(r):

(1)

The electrostatic bond strength of each bond formed
by the cation M(ij) with the anions A(r) is defined as
the ratio of the cation charge q(ij) and its coordination
number N(ij):

. (2) 

Pauling’s second rule is useful for structure vali-
dation: its failure can indicate either the presence of
serious mistakes in the structure determination or a
wrong interpretation, such as the overlooking of long
but still active bonds. The rule is also used to infer the
position of missing light atoms in presence of heavier

atoms in structures determined by X-ray diffraction.
The typical example is that of H+, whose precise posi-
tion cannot be determined by this technique.
Eqs. (1) and (2) implicitly assume that each cation

M(ij) is bonded to only one type of anion, and that
the coordination polyhedron is regular or semi-regular
(all the bonds have the same length). Whereas many
compounds are actually mono-anionic, the second as-
sumption, which is based upon the idea of interpreting
the bond length as the sum of ionic radii, is only
seldom realized. The larger the deviation of a coordi-
nation polyhedron from (semi) regular shape, the more
Eq. (1) is violated.
Pauling’s second rule applies to structures with non-

regular polyhedra only if the dependence of the bond
strength (s) from the bond length (d) is introduced.
Such dependence is obtained through an empirical non-
linear function:

(3)

where ‘ij→ r’ indicates the bond between the M(ij)
cation and the A(r) anion, and p is the vector of the
empirical parameters. Differently from Eq. (2), where
all bonds around a cation by definition have the same
strength, in Eq. (3) the dependence on the anions,
through the index r, has to appear explicitly. The bond
strength computed according to Eq. (3) is commonly
termed Bond Valence (BV). Several curves have been
proposed by different authors, such as:

Brown-Shannon, Brown-Wu [2, 3]:

Σij– s ij( )=q r( ).

s ij( )=q ij( )/N ij( ) s ij r→( )=f d ij r→( ),p[ ]
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(4)

Brown-Altermatt [4]:

(5)

These authors derived the empirical parameters of
their curves for the most common cations M and for A
= oxygen by fitting a large set of refined structures. R0

and N or B are the fitted parameters and s0 is a constant
that is usually chosen arbitrarily to be 1.0. Empirical
parameters for curves of anions other than oxygen are
available in literature (e.g. [5-7]) but the main appli-
cations are for oxygenated compounds, which are
widespread in the inorganic realm. 
The BV method represents a clear improvement with

respect to Pauling’s original approach, but has some
limitations, which can be summarized as follows:
1. The empirical parameters depend on the M-A pair;
2. The empirical parameters are obtained by fitting

on structures determined at ambient conditions, and the
curves give less reliable results the more the experi-
mental conditions diverge from those at which the
parameters were obtained;
3. The charge Q(ij) of the cations M(ij), and the

charge Q(r) of the anions A(r) are calculated in a
parallel way:

(6)

(7)

and convey thus the same type of information [the ratio
h(ij)/h(r) of the multiplicities of the Wyckoff positions
in Eq. (6) removes multiple contributions from bonds
that are equivalent by symmetry. It does not enter in
Eq. (7) because also equivalent bonds contribute to the
coordination sphere of the (ij)-th cation].
4. The deviations of Q(ij) and Q(r) from the formal

oxidation numbers q(ij) and q(r) are commonly used to
discuss the presence of either physical or electronic
strains in the structure, but the method has no internal
criterion to confirm that the divergence actually reflects
some sound structural features, instead of deriving
from errors in the structure or from the method itself,
which can simply be too approximate in some cases.
An independent evaluation is thus necessary.
5. The empirical curves give worse results when

bond distances span a wide range of lengths, as in the
cases, for instance, of Na-O and Tl-O. These M-A pairs
require not only specific parameters, but specific
curves with three empirical parameters, instead of two
[8].

Effective Coordination Number (ECoN)

The coordination number for regular or semi-regular

polyhedra is unequivocally determined. When the
bonds are no longer all equal but span a limited range
of lengths with a clear gap with respect to non-bonding
distances, the number of anions coordinated by a cation
can still be unequivocally identified, but this coordination
number does not measure the relative weight of each
bond. For example, six bonds forming a distorted tri-
gonal antiprism are not equivalent to six bonds forming
a regular octahedron, even when the (unweighted)
arithmetic mean distance is identical, but the classical
coordination number is 6 in both cases. When the
bonds span a wide range of lengths, the determination
of the coordination number itself becomes problematic,
because of the difficulties of separating bonding and
non-bonding contacts. The solution consists in the
extension of the definition of coordination number to a
real (non-integer) number that measures the relative
weight of each bond. This non-integer number is
termed Effective Coordination Number, ECoN [9, 10]
and is defined in terms of a weighted mean distance in
each coordination polyhedron. The following equations
are written considering also the cases of structures with
more than one species of anions, which are indicated as
A(rs): exactly as for i and j in case of cations, r
identifies the atomic species and s refer to the crystallo-
graphic type [11, 12]. The L-th bond length between
M(ij) and A(rs) is indicated as d(ij→ rs)L, where the
bond lengths are classified with increasing length,
d(ij→ rs)1 being the shortest. The weighted mean
distance is calculated as:

.

(8)

where m(ij→ rs)L is the multiplicity of the L-th bond.
<1d(ij→ r)> decreases with the increase of the distor-
tion of the coordination polyhedron. The relative
weight of each bond in a polyhedron is measured by
the bond weight:

(9)

and ECoN is given by the sum of the bond weights:

. (10)

For polyhedra with only one species of anions 1ECoN
(ij→ r) and 1ECoN(ij) coincide. For largely distorted
coordination polyhedra, Eq. (8) has to modified through

s ij r→( )=s0 d ij r→( )/R0[ ] N–

s ij r→( )=s0exp R0−d ij r→( )[ ]/B{ }.

Q r( )=−Σijs ij r→( )
h ij( )
h r( )
----------

Q ij( )=Σrs ij r→( )
d

1
ij r→( )〈 〉=

ΣsΣLd ij rs→( )Lm ij rs→( )L exp 1−
d ij rs→( )L
d ij rs→( )1
------------------------

6

⎩ ⎭
⎨ ⎬
⎧ ⎫

⋅

ΣsΣLm ij rs→( )L exp 1−
d ij rs→( )L
d ij rs→( )1
------------------------

6

⎩ ⎭
⎨ ⎬
⎧ ⎫

⋅

---------------------------------------------------------------------------------------------------------------------

BW
1
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d
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an iterative procedure which converges after n steps:

.

(11)

The bond weight nBW(ij→ rs)L is obtained by sub-
stituting <nd(ij→ rs)> for <1d(ij→ rs)> in Eq. (9), and
nECoN(ij) by substituting nBW(ij→ rs)L for 

1BW(ij→
rs)L in Eq. (10).
The effect of the deviation from the (semi)regularity

in the shape of the coordination polyhedra can be seen
in the example in Table 1, where a regular octahedron
with six distances of 2.00 Å (a distance that could
correspond, for instance, to the Mg-O bond) is pro-
gressively distorted while keeping the arithmetic mean
distance at 2.00 Å (further examples can be found in
[9]). From Table 1 it clearly appears that: 1) the effect
of the polyhedron distortion is much more accentuated
on ECoN than on the weighted mean distance; 2) at
low distortions, there is practically no difference bet-
ween the non-iterative calculation and the iterative one;
when the distortion increases, however, the non-
iterative calculation gives a shorter average bond
length and tends thus to underestimate the weight of
each bond, and especially of longer bonds; the iteration

corrects this artifact. The classical coordination number
is 6 in all cases but the weight of the longer bonds
decreases rapidly and ECoN shows that in the last case
the total contribution of the six oxygen atoms to the
coordination of M is less than 5.
In the above equations the only empirical parameter

is the exponent 6. It was chosen because it resulted in
1ECoN identical with the classical coordination number
for simple and regular structures [9]. This exponent,
and thus also Eqs. (8)~(11), does not depend either on
the type of structure or on the experimental conditions.

Charge Distribution

So far, the analysis of the coordination polyhedra has
been purely geometric. The next step consists in intro-
ducing the chemical specificity, and this is obtained by
distributing the formal oxidation numbers, q(ij) and
q(rs), among the chemical bonds as a function of the
bond weights, through the contribution by the A(rs)
anion to nECoN(ij→ r):

. (12)

The fraction of q(ij) that the cation M(ij) shares with
the anion A(rs) is obtained by multiplying ΔnECoN by
q(ij):

, (13)

where F(ij→ r) is a scale factor: for structures with
only one species of anions, F(ij→ r)=1 (for details, see
[12]). The computed ‘charge’ of the anions is then
obtained by summing up Δq(ij→ rs), taking however
into account the ratio of the multiplicities of the
respective Wyckoff positions (to avoid counting more
than once the contributions from the same ion):

(14)

The ‘charge’ of the cation M(ij) is computed as the
weighted sum of q(rs)/Q(rs) for the anions A(rs)
bonded to M(ij), where the weight is the fraction of
shared q(ij) defined by Eq. (13):

(15)

A structure which is correctly solved and perfectly
valence-balanced has both q(rs)/Q(rs) and q(ij)/Q(ij)
ideally equal to 1. Structural strains affect q(rs)/Q(rs),
which deviates from 1: in this case we speak of over-
under-bonding (OUB) effect. When a real OUB effect
is present, some q(rs)/Q(rs) ratios deviate from 1, but
all the q(rs)/Q(rs) ratios corresponding to the A(rs)

d
n
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⎨ ⎬
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n
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n
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Table 1. Details of ECoN calculation for four different polyhedra
all with the same arithmetic mean <M-O> distance

M-O(1) 2.00 1.95 1.89 1.80
1BW[M→O(1)] 1.00 1.14 1.27 1.30
nBW[M→O(1)] 1.00 1.14 1.28 1.36

M-O(2) 2.00 1.97 1.94 1.87
1BW[M→O(2)] 1.00 1.08 1.11 1.08
nBW[M→O(2)] 1.00 1.08 1.13 1.13

M-O(3) 2.00 1.99 1.97 1.92
1BW[M→O(3)] 1.00 1.02 1.02 0.92
nBW[M→O(3)] 1.00 1.02 1.03 0.98

M-O(4) 2.00 2.00 2.02 1.99
1BW[M→O(4)] 1.00 0.99 0.87 0.71
nBW[M→O(4)] 1.00 0.99 0.88 0.76

M-O(5) 2.00 2.04 2.07 2.18
1BW[M→O(5)] 1.00 0.87 0.73 0.27
nBW[M→O(5)] 1.00 0.87 0.74 0.30

M-O(6) 2.00 2.05 2.11 2.24
1BW[M→O(6)] 1.00 0.84 0.62 0.18
nBW[M→O(6)] 1.00 0.84 0.63 0.20

〈M-O〉 2.00 2.00 2.00 2.00

〈1d(M→O)〉 2.00 2.00 1.98 1.90

〈nd(M→O)〉 2.00 2.00 1.98 1.91
1ECoN 6.00 5.93 5.62 4.46
nECoN 6.00 5.93 5.69 4.73
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bonded the cation M(ij) enter in the calculation of Q(ij)
in Eq. (15), and q(ij)/Q(ij) should not be affected by
the OUB effect. Reasons for q(ij)/Q(ij) significantly
deviating from 1 can be: 1) the refined structure model
is inadequate including overlooked (light) atoms and
disorder; 2) wrong assignment of oxidation numbers,
including the case of sites with isomorphous sub-
stitutions; 3) presence of M-M or A-A bonds, which
are not accounted for by the M(ij)→ A(rs) bonding
pattern assumed by the CD method; 4) the coordination
of one or more cations is so distorted that the poly-
hedral description is too approximate. When instead
q(ij)/Q(ij) is reasonably close to 1, Q(rs), nECoN(ij→
r) and, with reference to each bond, nBW(ij→ r)L, are
suitable parameters to investigate structural changes,
e.g. as a function of composition, temperature and pre-
ssure [11, 13]. The q(ij)/Q(ij) ratio is thus the internal
criterion to evaluate the reliability of the structure and
the applicability of the method. An analogous criterion
is instead not available in the BV method.
The bond valence computed through the empirical

curves, Eq. (3), is interpreted as the number of elec-
trons pairs associated with a bond [14]. Instead, the
bond weight, Eq. (9), is a purely geometric quantity
that depends only on the geometrical features (size,
distortion, etc.) of the coordination polyhedra. The
chemical specificity enters a posteriori, through Eq.
(13). Besides, the ‘charges’ are the result of the
distribution of the formal oxidation numbers, whereas
the empirical curves compute the ‘charges’ directly
from the bond distances.

Example 1: investigation of the cation distribution
The structure of LuFeZn4O7 was refined [15] during

a study of the polysomatic series LuFeO3(ZnO)n (for
details about polysomatic series see [16]). The structure
was refined by single-crystal X-ray diffraction, but the
distribution of Fe among the M sites could not be
determined because of the presence of the much heavier
Lu atom. Different ordering models gave practically
the same agreement with the experimental data, leaving
unanswered the question about the distribution of Fe.

The cation ordering can be investigated by CD analysis,
because of the different q(ij) (2 vs. 3) of Zn and Fe.
Table 2 gives the analysis of the geometry of the

coordination polyhedra in LuFeZn4O7 in terms of
ECoN and its components. Lu occupies a regular octa-
hedron; sites X1 and X2 are undistorted and distorted
trigonal bipyramids respectively, and X3 is a trigonal
pyramid, very close to a tetrahedron. X2 is
significantly less regular than X1, as shown by nECoN
(4.03 vs. 4.34) and by the very small bond weight X2-
O1.
Table 3 (see [17]) gives the Charge Distribution

analysis for two models: Fe disordered among the three
X sites (upper half) and Fe avoiding X3 (as suggested

Table 2. Analysis of the coordination polyhedra for LuFeZn4O7 (bond distances after [15]). X1~X3 indicate the three cation sites
occupied by Fe and Zn (see Table 3). h(ij) and h(rs) are the multiplicities of the Wyckoff positions occupied by cations and anions
respectively

M(ij) h(ij) A(rs) h(rs) d(ij→rs) 〈M-O〉 〈nd(ij→r)〉 nBW(ij→rs) nECoN(ij)

Lu 2 O4 4 2.207 (×6) 2.207 2.207 1.00 6.00

X1 2 O1 2 1.929 (×3) 2.033 1.979 1.16 4.34

O2 4 2.190 (×2) 0.44

X2 4 O2 4 1.959 (×3) 2.094 1.983 1.07 4.03

O3 4 2.056 (×6) 0.79

O1 2 2.535 (×6) 0.03

X3 4 O4 4 1.969 (×6) 1.986 1.985 1.05 4.00

O3 4 1.992 (×3) 0.98

Table 3. Charge Distribution for LuFeZn4O7 for two different
model of Fe ordering: complete disorder (upper half) and partial
order in the sites X1 and X2 (lower half) (after [17])

Site Occupation q
CD BV [3]

Q q/Q Q q/Q

Lu Lu 3.00 2.88 1.04 3.20 0.94

X1 Zn/Fe : 4/1 2.20 2.40 0.92 2.23 0.99

X2 Zn/Fe : 4/1 2.20 2.22 0.99 2.04 1.08

X3 Zn/Fe : 4/1 2.20 2.14 1.03 1.95 1.13

σ 0.14 0.21

O1 O -2.00 -1.79 1.12 -1.92 1.04

O2 O -2.00 -1.98 1.01 -1.86 1.08

O3 O -2.00 -2.05 0.98 -1.78 1.12

O4 O -2.00 -2.08 0.96 -2.10 0.95

σ 0.13 0.17

Lu Lu 3.00 2.96 1.01 3.20 0.94

X1 Zn/Fe : 2/1 2.33 2.41 0.97 2.27 1.03

X2 Zn/Fe : 2/1 2.33 2.27 1.03 2.08 1.12

X3 Zn 2.00 2.05 0.98 1.88 1.06

σ 0.07 0.20

O1 O -2.00 -1.90 1.05 -1.96 1.02

O2 O -2.00 -2.09 0.96 -1.89 1.06

O3 O -2.00 -1.93 1.04 -1.75 1.14

O4 O -2.00 -2.03 0.99 -2.09 0.96

σ 0.09 0.17
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by the fact that in general Zn preferentially occupies
tetrahedral sites [18]). The overall deviation of Q with
respect to q is measured by the parameter 

(16)

which reduces to the classical standard uncertainty for
atoms all with the same q. 
The disordered model results in Q(ij) significantly

deviating from q(ij) for Lu and X1 and a high σ,
whereas the model with only Zn in X3 gives a much
better agreement for all the cationic sites and a much
lower σ. The strong OUB suggested for O1 by the
disordered model is unlikely and comes from the
imprecision of the model itself. The partially ordered
model confirms the underbonding of O1, but
drastically reduces it to a much more reasonable value.
For the sake of comparison, in Table 3 the BV

analysis according to the Brow-Wu [3] curve is also
given. The two models are practically not differentiat-
ed, showing that the BV approach is less sensible to
details like the isomorphous substitution of atoms with
close atomic numbers.

Example 2: distorted polyhedra, and the vanadyl
group
The structure of K2V3O8 [19] contains three crystallo-

graphically independent cation-centered coordination
polyhedra. The K-centered polyhedron, as often occurs
for alkali metals, spans a wide range of bond lengths,
where it is difficult to quantitatively separate bonding
and non-bonding contacts. The V1-centered square
pyramid is typical of the vanadyl group, with one
unusually short bond and four much longer bonds. The
V2-centered polyhedron is instead a distorted tetra-
hedron in which the shortest and the longest bonds are
almost equally separated from the two central bonds,
which in their turn are close to the arithmetic mean
distance <M-O>. Table 4 shows that for the V2-
centered tetrahedron the iterative calculation converges
almost immediately, resulting in <nd(ij→ r)> practi-
cally identical to <1d(ij→ r)> and close to <M-O>.

Instead, for the K1- and V1-centered polyhedra <1d
(ij→ r)> is too short, resulting in bond weights and
ECoN unrealistically low. This effect is compensated
by the iterative algorithm, which gradually lengthens
the average bond length until convergence. The corre-
sponding CD analysis is given in Table 5. Without
iteration, a strong OUB is reported for O3 and O4, but
the lack of agreement on the cations indicates that such
OUB is not realistic. The iterative calculation (CD-IT)
leads instead to complete agreement on the cations,
substantiating thus the figures on the anions. The OUB
on O3 is confirmed, although reduced in value, where-
as that on O4 almost disappears. The underbonding on
O4 and especially on O3 is only apparently larger than
the overbonding on O1 and O2 and comes from the
different multiplicities of the Wyckoff positions occupi-
ed by the oxygen atoms.
The BV analysis indicates strong overbonding on all

cations and on three of the four anions, which clearly
derives from the inadequateness of the method to
analyze structures with distorted coordination poly-
hedra like those of the present example.

σ= Σij q ij( ) Q ij( )–[ ]2/N−1{ }
1/2

Table 4. Analysis of the coordination polyhedra for K2V3O8 [19]

M(ij) h(ij) A(rs) h(rs) d(ij→rs) 〈M-O〉 〈1d(ij→r)〉 1BW(ij→rs) 1ECoN(ij) 〈nd(ij→r)〉 nBW(ij→rs) nECoN(ij)

K 4 O2 4 2.430 3.069 2.573 1.34 3.25 2.662 1.53 4.20

O1 8 2.673 (×2) 0.77 0.98

O3 2 3.090 0.14 0.24

O2 4 3.191 (×2) 0.07 0.14

O1 8 3.298 (×2) 0.03 0.07

O4 2 3.422 (×2) 0.01 0.03

V1 2 O4 2 1.582 1.872 1.674 1.34 2.26 1.761 1.61 3.38

O1 8 1.945 (×4) 0.23 0.44

V2 4 O2 4 1.628 1.22 1.23

O1 8 1.700 (×2) 1.706 1.690 0.97 3.80 1.692 0.97 3.83

O3 2 1.794 0.65 0.66

Table 5. Charge Distribution for K2V3O8 [19] without (CD) and
with (CD-IT) iteration. For comparison, the results of the BV
computation according to two different empirical curves are also
given

Site q
CD CD-IT BV [3] BV [4]

Q q/Q Q q/Q Q q/Q Q q/Q

K 1.00 1.00 0.99 0.99 1.01 1.29 0.92 1.25 0.80

V1 4.00 3.69 1.08 4.02 1.00 4.24 0.94 4.31 0.93

V2 5.00 5.15 0.97 5.00 1.00 5.23 0.96 5.27 0.95

σ 0.24 0.02 0.31 0.34

O1 -2.00 -1.93 1.04 -2.04 0.98 -2.18 0.92 -2.24 0.89

O2 -2.00 -2.06 0.97 -2.03 0.98 -2.27 0.88 -2.17 0.92

O3 -2.00 -1.79 1.12 -1.82 1.10 -2.11 0.95 -2.18 0.91

O4 -2.00 -2.34 0.84 -1.93 1.04 -1.89 1.06 -1.85 1.08

σ 0.25 0.11 0.21 0.22
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Example 3: structures at non-ambient conditions
Table 6 gives the geometrical analysis of the coor-

dination polyhedra of CaFeSi2O6, a compound belong-
ing to the pyroxene group [20], at zero and at 9.9 GPa.
The close values of 1ECoN and nECoN, and of <1d
(ij→ r)> and <nd(ij→ r)> to <M-O> shows that all
Fe- and Si-centered polyhedra have limited distortion,
whereas Ca-centered polyhedron is more distorted, as
usual in the compounds with the structure of pyroxenes
[11].
Table 7 shows the CD and BV analysis. The CD

(without iteration) and CD-IT (with iteration) calcu-
lations give practically identical results: because of the

limited distortion of the polyhedra, the iterative
algorithm converges almost immediately. The results of
the calculation employing the empirical curves show
less good, but still reasonable, figures for the structure
at 0 GPa, but completely meaningless figures for the
structures at 9.9 GPa. The comparable quality of the
refinement at the two pressures is confirmed by the CD
calculation. The bad results of the BV calculation
clearly derive by using for a high-pressure structure
empirical parameters that were obtained on a set of
structures at ambient conditions.

Discussion

Table 6. Analysis of the coordination polyhedra for CaFeSi2O6 at two different pressures [20]

p (GPa) M(ij) h(ij) A(rs) h(rs) d(ij→rs) 〈M-O〉 〈1d(ij→r)〉 1BW(ij→rs) 1ECoN(ij) 〈nd(ij→r)〉 nBW(ij→rs) nECoN(ij)

0 Ca 4 O4 8 2.334 (×2) 2.509 2.416 1.21 6.46 2.429 1.24 6.89

O1 8 2.352 (×2) 1.16 1.19

O3 8 2.632 (×2) 0.51 0.54

O3 8 2.721 (×2) 0.35 0.38

Fe 4 O2 8 2.085 (×2) 2.128 2.125 1.11 5.95 2.125 1.11 5.95

O1 8 2.136 (×2) 0.97 0.97

O1 8 2.162 (×2) 0.90 0.90

Si 8 O2 8 1.584 1.634 1.626 1.16 3.89 1.627 1.16 3.90

O1 8 1.600 1.10 1.10

O3 8 1.667 0.85 0.86

O3 8 1.685 0.79 0.79

9.9 Ca 4 O4 8 2.296 (×2) 2.429 2.375 1.20 7.06 2.382 1.22 7.20

O1 8 2.306 (×2) 1.18 1.20

O3 8 2.536 (×2) 0.62 0.64

O3 8 2.577 (×2) 0.53 0.55

Fe 4 O2 8 2.036 (×2) 2.079 2.076 1.12 5.95 2.076 1.12 5.95

O1 8 2.094 (×2) 0.95 0.95

O1 8 2.107 (×2) 0.91 0.91

Si 8 O2 8 1.567 1.618 1.609 1.15 3.87 1.610 1.15 3.88

O1 8 1.575 1.13 1.13

O3 8 1.654 0.83 0.84

O3 8 1.675 0.76 0.76

Table 7. Charge Distribution for CaFeSi2O6 [20] at two different pressures. For comparison, the results of the BV computation according
to two different empirical curves are also given

0 GPa 9.9 GPa

Site q
CD CD-IT BV [3] BV [4] CD CD-IT BV [3] BV [4]

Q q/Q Q q/Q Q q/Q Q q/Q Q q/Q Q q/Q Q q/Q Q q/Q

Ca 2.00 2.00 1.00 2.00 1.00 1.97 1.01 1.87 1.07 2.00 1.00 2.00 1.00 2.29 0.87 2.44 0.82

Fe 2.00 1.96 1.02 1.96 1.02 2.15 0.93 2.08 0.97 1.97 1.02 1.97 1.02 2.44 0.82 2.37 0.84

Si 4.00 4.02 1.00 4.02 1.00 3.91 1.02 3.92 1.02 4.02 1.00 4.01 1.00 4.08 0.98 4.09 0.98

σ 0.03 0.03 0.13 0.08 0.03 0.03 0.38 0.41

O1 -2.00 -2.11 0.95 -2.11 0.95 -2.06 0.97 -2.07 0.97 -2.13 0.94 -2.13 0.94 -2.27 0.88 -2.29 0.87

O2 -2.00 -1.94 1.03 -1.93 1.04 -1.84 1.09 -1.87 1.07 -1.90 1.06 -1.89 1.06 -1.97 1.02 -2.00 1.00

O3 -2.00 -1.96 1.02 -1.96 1.02 -2.06 0.97 -2.04 0.98 -1.98 1.01 -1.98 1.01 -2.20 0.91 -2.20 0.91

σ 0.10 0.10 0.13 0.11 0.12 0.12 0.24 0.25
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The CD method represents the most recent approach
based on Pauling’s idea of bond strength. Differently
from other methods, it consists essentially of a geo-
metrical analysis of the coordination polyhedra, whose
details are used for structure validation and to investi-
gate details that may be hardly determined in other
ways, like the isomorphous substitution of atoms with
close atomic numbers. When applied to compounds
belonging to the same structural series or with common
features, it may also reveal some definite trend as a
function of composition, temperature and pressure [11,
12]. Differently from methods employing empirical
curves, the CD method can analyze equally well
structures determined at ambient conditions and under
extreme conditions.
As shown in the examples above, the CD method

applies equally well to both ionic and covalent bonds.
However, the term ‘charge’ applied to the weighted
sum of the bond weights, Eqs. (13)~(15), reflects
essentially an ionic model of the chemical bond, where
the computed ‘charges’ Q(ij) and Q(rs) are completely
concentrated on the cations and the anions respectively.
Therefore, the figures shown by Q(ij) and Q(rs) do not
have the same meaning of, e.g., the Mulliken popu-
lation. The deviation from q shown by these two
methods may even be in opposite directions, especially
when the covalent character of the bond is relevant,
simply because of the different meaning of the two
analyses. The OUB effect as measured by the Q(rs) is
essentially a geometrical effect that has to be inter-
preted in terms of the adimensional bond weights.
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