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The current methods for evaluating the stability of cast-in-place pile hole walls are ine῿�cient and have poor accuracy, leading 
to incorrect selection of steel reinforcement methods and a�ecting the quality of construction projects. To address the above 
issues, a smart evaluation method for the stability of cast-in-place pile hole walls is proposed, taking the southeastern coastal 
region as an example. Firstly, a wall stability evaluation index system was constructed based on typical local geological 
conditions, covering dimensions such as geological factors, groundwater levels, and construction parameters. Principal 
Component Analysis (PCA) and Factor Analysis (FA) were applied to extract key feature variables. Secondly, historical data 
from 90 CIPP engineering projects were preprocessed through cleaning and normalization, and then divided into training and 
testing sets in a 7:3 ratio. A multi-strategy Harris Hawks Optimization (MHHO) algorithm was used to optimize the initial 
weights of the Backpropagation Neural Network (BPNN), thereby building a stability prediction model. Finally, the model 
performance was evaluated using multiple metrics including F1-score, AUC, recall, and ⿿�tting degree. The results show that 
MHHO-BPNN achieved an accuracy of 0.967 and an F1-score of 0.975 on the test set, signi⿿�cantly outperforming mainstream 
benchmark models such as the Genetic Algorithm-optimized BPNN (RGA-BPNN) and the Particle Swarm Optimization-
based SVM (IPSO-SVM). This method provides data support for rapid evaluation of wall stability and reinforcement scheme 
formulation, and demonstrates strong potential for practical engineering applications.
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Introduction

The research on the stability evaluation of the 
borehole wall of Cast-in-Place Piles (CIPPs) is an 
important issue in engineering construction, which can 
provide data support for the formulation and selection 
of reinforcement strategies for CIPPs. Therefore, it is 
directly related to the construction quality and safety of 
pile foundations. The CIPP hole wall stability refers to 
the bottom hole wall stability of the pile hole during the 
drilling process. It is influenced by multiple factors such 
as geological conditions, engineering loads, and material 
strength. If the hole wall is unstable, it will lead to pile 
foundation engineering accidents, seriously affecting the 
construction progress and quality [1, 2]. The traditional 
evaluation method for the stability of CIPP hole walls 
usually uses on-site monitoring, geological exploration, 
and other means, and then evaluates it through manual 
processing and analysis of data. For the ellipticity defect 
in CIPP, VanHorn an improved analytical solution to 
calculate the critical flexion pressure of the ellipticity 
imperfect lining with annular gap influence. The results 

showed that the new method was in good agreement 
with the experimental data, which could effectively 
predict the flexion pressure of the lining [3]. However, 
these methods have problems such as long cycles, 
high costs, and strong subjectivity. Therefore, finding 
a more accurate and efficient evaluation method is 
crucial. Based on this, the hole wall of CIPP has been 
reinforced. This improves the quality and safety of pile 
foundation engineering, while also saving costs and 
shortening the construction period for the project. The 
study takes the southeastern coastal area as an example 
to explore the intelligent and high-precision evaluation 
approach for the borehole wall stability of CIPPs. 
Back-propagation Neural Network (BPNN) is a mature 
artificial intelligence technology that has been widely 
applied in intelligent evaluation, intelligent prediction, and 
feature classification. The BPNN is used for intelligent 
evaluation of CIPP pore wall stability to improve the 
objectivity and accuracy. However, the BPNN model 
has significant shortcomings. Its performance heavily 
depends on the initial parameter selection [4, 5]. To 
address this issue, a Multiple Strategy-Harris Hawks 
Optimization (MHHO) algorithm is proposed to optimize 
BPNN. By obtaining the optimal initial parameters, the 
performance and evaluation accuracy can be improved. 
The main innovations of the study are twofold. The first 
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is to utilize the BPNN model to achieve intelligent and 
efficient evaluation of the CIPP hole wall. The second is 
to propose a HHO based on multi-strategy optimization. 
MHHO is applied to optimize the BPNN and improve 
the evaluation accuracy.

It is expected to improve the traditional CIPP hole wall 
stability evaluation method by introducing intelligent 
algorithms and optimization techniques, providing more 
accurate and efficient evaluation tools for the engineering 
and construction industries. This will not only help 
to improve the quality and safety of pile foundation 
construction, but also promote the technological 
progress and innovative development of the engineering 
construction industry. The main structure includes four 
parts. The first part is to organize and analyze the current 
research on CIPPs and BPNN. The second part is to 
construct an intelligent evaluation model for the stability 
of CIPP hole walls based on MHHO-BPNN. The third 
part is to analyze the performance of the CIPP hole wall 
stability intelligent evaluation model. The last part is a 
summary of the research content.

Related works
In the southeastern coastal areas of China, due to the 

unique geographical location, the local area is mainly 
composed of soft soil with abundant water. The soil 
bearing capacity is relatively weak, making it difficult 
to meet the construction needs of modern construction 
projects. In this context, the CIPPs is applied to reinforce 
the foundation and improve the bearing capacity, which 
can enhance the safety and quality of construction 
projects. It is crucial for the economic growth of the 
southeastern coastal areas. Therefore, CIPPs have 
received attention from different researchers. Shi R 
et al. conducted experiments in a permafrost region 
to investigate the effect of freeze-thaw cycles on the 
CIPPs. It had reference significance for the construction 
projects in permafrost areas [6]. The soil bearing 
capacity of coral sand was weak, making it difficult 
to meet the construction needs. Therefore, Ding X et 
al. used CIPPs to reinforce the soil. On this basis, the 
bearing performance of the CIPP under vertical load was 
analyzed, providing data support for the construction of 
coral sand soil engineering [7]. In response to the lack 
of a unified and efficient calculation method for the 
thermal resistance of parallel U-shaped grouting energy 
piles, Park S et al. proposed an empirical formula for the 
thermal resistance of parallel U-shaped grouting energy 
piles. The calculation efficiency and accuracy of drilling 
thermal resistance were improved, providing theoretical 
and data support for the application of parallel U-shaped 
CIPPs [8]. A’amal A et al. analyzed the performance 
of defective CIPPs by testing defective model piles in 
soil. The model pile test results were discussed from a 
geotechnical engineering project or structural perspective 
based on the type of failure, providing data support for 
the repair of defective CIPPs [9]. For large-scale projects 

with a large amount of mud at the bottom of CIPP, Heo 
designed a bidirectional load test to explore the effect 
of mud on the CIPPs. Numerical analysis showed that 
the slurry was easily mixed with the poured concrete. 
Therefore, general mud not have a significant impact on 
the CIPPs [10]. In response to the special geographical 
environment in plateau areas and the low applicability 
of pre-stressed CIPPs for general structures, Huang et 
al. designed a CIPP for plateau areas. This method was 
applied to transmission line engineering in plateau areas. 
According to the findings, the CIPP had good application 
effects [11]. Liu et al. constructed a theoretical way for 
heat transfer and temperature characteristics based on the 
surrounding environment and the physical characteristics 
of the CIPP itself. Thus, the heat conduction process of 
CIPPs was studied. The integrity of the CIPP was tested, 
providing theoretical guidance for the research of CIPPs 
[12]. Yamany M S et al. designed a probability model. 
It was applied to predict the overall structural of CIPPs 
and analyze the degradation of highway tunnels. This 
method provided data support for tunnel engineering 
maintenance, improving the economy and safety of 
tunnel engineering maintenance work [13].

BPNN is a neural network that has extensive future 
and excellent performance. It has broad application 
value in fields such as intelligent evaluation, prediction, 
and feature classification. Chen L et al. constructed an 
evaluation model for university research performance 
management using an improved BPNN. It achieved 
scientific, intelligent, and high-precision evaluation of 
scientific research performance management, providing 
data support for optimizing scientific research performance 
management [14]. Li et al. constructed an intelligent 
urban building information model based on improved 
BPNN for evaluating and managing urban intelligent 
buildings, promoting the modernization and intelligent 
development of cities [15]. Wu et al. proposed an 
improved Simulated Annealing algorithm (SA) based on 
Genetic Algorithm (GA). Then, based on the improved 
SA, the structure of BPNN was optimized to improve 
the performance. This study provided new ideas and 
theoretical references for the performance optimization 
and application of BPNN [16]. Tang et al. proposed an 
improved BPNN model for fitting, training, and learning 
color fundi images. The trained BPNN model was used 
for retinal vascular segmentation to improve the efficiency 
and accuracy of retinal vascular segmentation, enhancing 
treatment effectiveness [17]. Liu et al. designed a three-
layer training BPNN model. This model realized the 
intelligent prediction of cross network society relations, 
reduced the complexity of this work, and improved the 
efficiency of social relations prediction. The findings 
demonstrated that it had high prediction accuracy [18]. 
Wang L et al. used the GA for global optimization to 
acquire the optimal initial parameters. The enhanced 
BPNN was used to intelligently and efficiently evaluate 
the risks of knowledge fusion in the innovation ecosystem, 
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providing data support for knowledge fusion in the 
innovation ecosystem [19]. Zhang et al. explored the 
application path and effectiveness of BPNN in the 
financial field. A stock price pattern classification and 
prediction model was constructed based on BPNN. After 
testing, the classification and prediction accuracy of the 
model exceeded 90%, indicating good performance [20]. 
Li et al. built a comprehensive processing, and review 
of recent relevant literature to explore the application 
methods, pathways, and effects of BPNN in distillation 
systems [21].

In the above content, there are many research results 
related to CIPPs and BPNN in the current research. BPNN 
has good application effects in the intelligent evaluation. 
However, there are almost no relevant research results on 
the application of BPNN to the performance evaluation 
of CIPPs. In addition, the performance of general BPNN 
also has certain limitations. It needs to be optimized to 
meet application requirements. In response to the above 
issues and the shortcomings of low efficiency and accuracy 
in current methods, an improved BPNN model based on 
MHHO is proposed to achieve intelligent evaluation of 
the CIPP hole walls stability, improving the evaluation 
effect. It is expected to improve the traditional CIPP 
hole wall stability evaluation method by introducing 
intelligent algorithms and optimization techniques, 
providing more accurate and efficient evaluation tools 
for the engineering and construction industries. This 
will not only help to improve the quality and safety 
of pile foundation construction, but also promote the 
technological progress and innovative development of 
the engineering construction industry.

Construction of intelligent evaluation model for the 
stability of CIPP hole walls based on MHHO-BPNN

In the southeast coastal area, due to the unique 
geographical location, the bearing capacity of most of 
the local soil is relatively weak, making it difficult to 
meet the construction needs of modern construction 

projects. Therefore, strengthening the foundation with 
CIPP is very important. The stability evaluation of the 
borehole wall of CIPPs has also received attention. Based 
on existing relevant literature and the usage of CIPPs 
in the southeastern coastal areas, a stability evaluation 
index system for the borehole wall of CIPPs has been 
constructed. Therefore, an intelligent evaluation model 
for the stability of CIPP hole walls is constructed based 
on the BPNN.

Construction of Index System for Evaluating the 
Stability of Bored Pile Wall

Many factors affect the stability of the borehole 
wall of bored piles, including geological factors, the 
quality of the pile itself, and construction methods. To 
achieve accurate and scientific evaluation of the CIPP 
hole wall, combined with existing research theories in 
the southeast coastal areas, the selection of evaluation 
indicators for the CIPP hole wall is carried out [22]. The 
evaluation index system for the stability of CIPP hole 
walls is constructed. Through analysis of engineering 
data and related research results in the current southeast 
coastal area, it is found that when the wall of the CIPP 
collapses, the main collapse area is in the sandy soil 
layer [23, 24]. Therefore, In the CIPP pore wall stability 
evaluation index system, sand layer related indicators are 
more important. Based on the above content, indicators 
are selected from three dimensions, namely geological 
conditions, engineering conditions, and groundwater 
conditions. The evaluation index system of CIPP hole 
walls is constructed, as illustrated in Fig. 1.

As can be seen from Fig. 1, the CIPP pore wall 
evaluation index system in this study comprises three 
main categories: Engineering conditions, Geological 
conditions, and Groundwater conditions. The selected 
indicators are designed to reflect the typical geotechnical 
characteristics of southeastern coastal areas, such as soft 
ground layers, thick sand strata, and high, fluctuating 
groundwater levels. For Engineering conditions, Drilling 
design depth and Drilling stratigraphic structure capture 

Fig. 1. CIPP physical system and index system.
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the depth and complexity of borehole disturbance. For 
Geological conditions, indicators including Sand layer 
thickness, The ratio of sand layer to soil layer, The 
average standard penetration rate of the sand layer, 
Relative density of sand, The average particle size of 
sand particles, and Uneven coefficient of sand and soil 
jointly characterize the looseness, uniformity, and stability 
of subsurface materials. For Groundwater conditions, 
Changes in groundwater level and Groundwater depth 
reflect the potential hydrogeological disturbance and 
pore wall softening effects.

The Analytic Hierarchy Process (AHP) combined 
with expert scoring method is applied to determine the 
weights of various indicators in Fig. 1. It is used as 
the input unit of BPNN for learning and fitting training. 
From the output results, the stability of the CIPP hole 
wall is divided into three parts, namely Low risk (Level 
1), Medium risk (Level 2), and High risk (Level 3). 
Depending on the above content, a stability evaluation 
model for the borehole wall of CIPPs is constructed using 
BPNN. However, in the current evaluation index system 
for the stability of CIPP hole walls, there are a large 
number of indicators that require BPNN to construct more 
input units. This increases the complexity and affects the 
efficiency and accuracy. Therefore, Principal Component 
Analysis (PCA) and Factor Analysis (FA) are applied to 
reduce the input vector dimension of BPNN and reduce 
the complexity of the model. Firstly, common factors 
are extracted based on PCA, as illustrated in Table 1.

In Table 1, a total of 3 common factors are extracted. 
Based on these three common factors, the stability of the 
CIPP hole wall can be roughly reflected. Then, factor 
analysis is used to extract the indicators with the highest 
correlation with the three common factors. Thus, the 
input unit for the CIPP hole wall based on BPNN is 
obtained. Table 2 displays the results of FA.

In Table 2, the indicators with the highest correlation 
corresponding to different common factors are obtained. 
The numerical values and weights corresponding to C1, 
C2, and C7 serve as input vectors for the BPNN-based 

stability evaluation model of CIPP hole walls, improving 
the operational efficiency of the model while ensuring 
the accuracy. However, the BPNN model has significant 
shortcomings. The performance heavily depends on the 
initial parameter selection. If the initial parameters are 
not selected properly, it will lead to poor evaluation for 
the CIPP hole wall [25]. Therefore, an enhancement 
strategy is designed to improve the BPNN to ensure 
stability evaluation of the CIPP well-bore, providing data 
support and reference for the reinforcement of the CIPP.

Construction of stability evaluation model for 
bored pile wall based on MHHO-BPNN

The performance of the BPNN is mainly affected by 
the initial parameter settings. Therefore, HHO is applied 
for global optimization to obtain the optimal initial 
parameters of BPNN [26]. HHO is a nature-inspired 
metaheuristic algorithm that simulates the cooperative 
hunting behavior of Harris hawks. In this study, HHO is 
employed to optimize the initial weights and thresholds 
of the BPNN, effectively enhancing its convergence 
speed and prediction accuracy while reducing the risk of 
falling into local optima. Compared to commonly used 
algorithms such as GA, Particle Swarm Optimization 

Table 1. Common factor extraction results

Composition
Initial features Extract the sum of the squares of the load

Total Percent 
variance/%

Cumulative 
contribution rate/% Total Percent 

variance/%
Cumulative 

contribution rate/%
1 4.021 40.21 40.21 4.021 40.21 40.21
2 2.105 21.05 61.26 2.105 21.05 61.26
3 1.638 16.38 77.64 1.638 16.38 77.64
4 .902 9.02 86.66 - - -
5 .743 7.43 94.09 - - -
6 .348 3.48 97.57 - - -
7 .101 1.01 98.58 - - -
8 .084 0.84 99.42 - - -
9 .038 0.38 99.80 - - -
10 .020 0.20 100.00 - - -

Table 2. FA results
Indicator 

code 1 2 3

C1 .918 .057 -.153
C2 .008 .905 .137
C3 .132 .334 -.352
C4 .554 -.108 .058
C5 -.173 .058 .144
C6 .156 .142 .147
C7 -.049 .055 .894
C8 .301 .136 .251
C9 .432 -.178 .025
C10 .101 .153 -.132
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(PSO), and Whale Optimization Algorithm (WOA), 
HHO offers advantages including a simpler structure, 
fewer control parameters, and strong global search 
capabilities. These characteristics make it particularly 
suitable for high-dimensional and nonlinear feature 
input scenarios like CIPP wall stability evaluation. 
Additionally, a MHHO is integrated to further improve 
its search diversity and robustness. The basic process of 
HHO is shown in Fig. 2.

In Fig. 2, the behavior of Harris eagle individuals in 
the HHO algorithm consists of three stages. It is divided 
into the search phase, search and development phase, 
and development phase. During the search phase, the 
individual Harris eagle is in a state of searching for prey. 
During the search and development phase, the Harris 
Hawk has found prey. In the development phase, Harris 
eagle individuals adopt different strategies to prey on 
the prey they find based on different situations. The 
predation strategies of Harris eagles can be divided into 
soft encirclement strategy, hard encirclement strategy, 
soft encirclement strategy, and hard encirclement strategy. 
Among them, in the search phase, HHO simulates Harris 
Eagles searching for prey based on the opportunity to 
opportunity strategy. In the search and development 
phase, HHO adjusts the search and development status 
of the algorithm by changing the energy factor of prey 
escape. The HHO algorithm switches between global 
and local searches. Among them, the escape energy El of 
prey is the physical strength of simulated prey in reality. 
The prey’s physical strength is constantly depleted while 
constantly avoiding the search of the Harris eagle. The 
value of prey escape energy El continuously decreases. 
The escape energy El is calculated in formula (1).

0El E E= ⋅ 	 (1)

In formula (1), E0 is the initial energy of the prey, 
with a value of [-1,1]. E is the ability factor, calculated 
in formula (2).

2 1 tE
T

 = − 
  	

(2)

In formula (2), t, T are the current and maximum 
iterations of the algorithm, respectively. The predatory 
strategy of the Harris eagle is determined by the El value 
and the probability of prey escape r, as shown in Fig. 2. 
In the soft siege strategy, the update strategy of Harris 
Eagle is displayed in formula (3).

( ) ( ) ( ) ( )1 rabbith t h t El Jh t h t+ = D − −
	

(3)

In formula (3), h(t) is the position of the individual in 
the t-th iteration. Dh(t) is the vector difference between 
the prey position and h(t) in the t-th iteration. hrabbit is 
the prey position vector. J is a random number with a 
value of [0, 2], representing the jumping energy of the 
prey. The calculation method is shown in formula (4).

( )52 1J r= − 	 (4)

In formula (4), r5 is a random number with a value of 
[0, 1]. The update strategy for Harris Eagle in the hard 
siege strategy is shown in formula (5).

( ) ( ) ( )1 rabbith t h t El h t+ = − D
	

(5)

Fig. 2. The basic process of HHO
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In the soft encirclement strategy, the update strategy 
of Harris Eagle is shown in formula (6).

( )
( ) ( )( )
( ) ( )( )

,
1

,

Y s Y s h t
h t

Z s Z s h t

 <+ = 
< 	

(6)

In formula (6), s(•) is the fitness function. Y, Z are 
calculated according to formulas (7) and (8), respectively.

( ) ( ) ( )rabbitY h t El J h t h t= − D − 	 (7)

( )Z Y S LF n= + ⋅ 	 (8)

In formula (8), S is a random vector with dimension n. 
LF( ) is the Levy flight function. In the hard encirclement 
strategy, the update strategy for Harris Eagle is shown 
in formula (9).

( )
( ) ( )( )
( ) ( )( )

,
1

,

Y s Y s h t
h t

Z s Z s h t

 ′ ′ <+ =  ′ ′ < 	

(9)

In formula (9), ,Y Z′ ′  are calculated according to 
formula (10) and formula (11), respectively.

( ) ( ) ( )rabbit rabbit mY h t El Jh t h t′ = − − 	 (10)

( )Z Y S LF n′ ′= + ⋅ 	 (11)

In formula (10), hm(t) is the average position vector of 
all Harris eagle individuals in the population. HHO has 
high search efficiency, simple structure, and excellent 
performance in high-dimensional problems. However, 
there are still shortcomings such as being easily trapped 
in local optima, premature maturation, and overly simple 
key parameter settings. Therefore, multiple strategies are 
proposed to improve HHO. Firstly, in commonly used 
HHOs, the population initialization method is random 

initialization, which cannot guarantee the diversity of 
the initial population. Therefore, the algorithm may 
appear too early, which affects the search efficiency. To 
address this issue, the best point set method is applied 
to initialize the population, so that the initial population 
can be relatively evenly dispersed in the search space. 
The comparison of two population initialization methods 
is shown in Fig. 3.

In HHO, the algorithm switches between global and 
local searches based on the value of El. When | E | < 1 
is reached, the algorithm enters the global search phase. 
Otherwise, the algorithm enters the local search phase. In 
general HHO algorithms, the E decreases linearly with 
the increase of algorithm iterations. When the factor is 
iterated to the later stage, the HHO algorithm is prone to 
falling into local optimization. To address this issue, an 
improved E-value update strategy is proposed to achieve 
nonlinear decrement. Therefore, the HHO algorithm 
can also perform global search in the later stages of 
iteration. The improved E-value update strategy is shown 
in formula (12).

3

2 1 tE
T

  = −     
	 (12)

The comparison between the E-value update strategy 
proposed in the study and the original E-value is shown 
in Fig. 4.

Based on the above content, the MHHO is utilized to 
optimize BPNN. To this end, an MHHO-BPNN grouting 
pile hole wall stability evaluation model is established to 
improve the evaluation effect and provide data support 
for the reinforcement of grouting piles. However, its 
internal decision-making process is often seen as a 
"black box" and lacks interpretability. This means that 
users may find it difficult to understand why the model 
makes specific predictions or classifications. To increase 
the interpretability of the model, the study adopts Layer 

Fig. 3. Comparison of two population initialization methods.
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wise Relevance Propagation (LRP) technology. Firstly, 
the MHHO algorithm is applied to optimize the initial 
parameters and training. Then the LRP technology is 
applied to analyze the decision-making process of the 
model. For a given input sample, LRP calculates the 
correlation score between each input feature and the 
model output. Allocation rules adopt ε- rules. Ultimately, 
each feature in the input layer will receive a correlation 
score. Then, the scores of each layer are normalized. 
Finally, the correlation score is checked to determine 
which input features have the greatest impact on the 
model's prediction results to understand how the model 
makes decisions based on input data.

Performance analysis of MHHO-BPNN grouting 
pile hole wall stability evaluation model

To prove the MHHO-BPNN grouting pile hole wall 
stability evaluation model, experiments are designed. 
Firstly, with the consent of the project management 
personnel for a certain project of CIPP engineering, 
historical data of the CIPP engineering project is obtained 
as the original experimental data set. After preprocessing 
the original data set, according to the 7/3 principle, the 
experimental data set is divided into training and testing 
sets. The number of MHHO iterations is set to 100, the 

population size is 50, the search space dimension is 4, 
and the learning factor is set to 0.01. The number of 
HHO iterations is set to 120, and the learning factor 
is 0.005. The WOA population size is 70. Firstly, the 
MHHO, HHO, and Whale Optimization Algorithm 
(WOA) [27] are used to optimize the BPNN to verify 
the optimization performance of the MHHO, as shown 
in Fig. 5. The convergence of MHHO algorithm, HHO 
algorithm, and WOA is shown in Fig. 5(a). The MHHO 
iterated 100 times to reach the optimal result, which was 
58. HHO had more iterations, which may be due to the 
HHO falling into local optimization in the later stages. 
Fig. 5(b) displays the training errors of the BPNN model 
during the training after optimizing the three algorithms. 
The convergence speed and accuracy of MHHO-BPNN 
were optimal. The above results indicated that the MHHO 
had the best optimization effect. The results in Fig. 5 
show that the MHHO algorithm can quickly find the 
optimal parameter combination within a limited iteration, 
significantly improve the model training efficiency, and 
is suitable for the requirements of real-time computing 
and rapid response at the construction site. Meanwhile, 
the lower training error means that the model has 
a stronger generalization ability, providing reliable 
technical support for the rapid stability assessment under 
different pile foundation conditions in engineering.

In the field of intelligent evaluation, common models 
include the BPNN model optimized by random genetic 
algorithm (RGA-BPNN) and the support vector machine 
model optimized by optimized PSO (IPSO-SVM). The 
MHHO-BPNN model is compared with the above two 
models. Fig. 6 shows the F1 values on the training and 
testing sets. In Fig. 6(a), on the training set, the F1 of 
MHHO-BPNN was 0.948, which was 0.045 and 0.097 
more than the RGA-BPNN and IPSO-SVM. In Fig. 
6(b), on the testing set, the F1 of the MHHO-BPNN 
was 0.975, which was 0.031 and 0.044 more than the 
RGA-BPNN and IPSO-SVM. The F1 value reflects the 
overall balancing ability of the model when accurately 
identifying high-risk and low-risk samples. The higher 
the value, the fewer cases of "misjudgment" and "missed 
judgment" in the model. The improvement of MHHO-

Fig. 4. Nonlinear E-value update strategy.

Fig. 5. Optimization performance analysis of several algorithms.
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BPNN in this index means that it is more reliable in 
the key task of judging whether the pile hole is stable. 
It can reduce the risk of missed alarms for unstable pile 
holes and also lower the false alarm rate for stable pile 
holes, thereby achieving a more reasonable allocation of 
reinforcement resources and construction arrangement, 
and improving the safety and economy of construction.

Fig. 7 shows the Recall values of multiple models. 
The validation adopts k-fold cross validation, where 
the value of k is selected based on the size and 
characteristics of the data. The research setting is 50. For 
each iteration, a different fold is selected as the testing 
set, and the remaining folds are used to train the model. 
Through this approach, k different model performance 
estimates are obtained, specifically in the comparative 
experiments of MHHO-BPNN, RGA-BPNN, and IPSO-
SVM models. The study calculates the Recall of each 
model in each cross validation iteration. In Fig. 7(a), 
the average Recall rate of MHHO-BPNN was 0.973, 

higher than the RGA-BPNN and IPSO-SVM. Similarly, 
in Fig. 7(b), the average Recall rate of MHHO-BPNN 
reached 0.984, which was still better than the other two 
models. Recall rate is a measure of the model's ability 
to identify "high-risk" samples. The improvement of 
this indicator indicates that MHHO-BPNN can capture 
potential unstable pile holes more comprehensively and 
minimize missed judgments to the greatest extent. This is 
of vital importance for safety management in engineering 
practice. It enables the early identification of potential 
collapse risk holes, allowing for early reinforcement 
or modification of construction plans. This effectively 
reduces the probability of sudden accidents and ensures 
the continuity of the construction process as well as the 
safety of on-site workers.

Figure 8 shows the Recall values. In Fig. 8(a), the 
Recall of MHHO-BPNN was 0.973, which was 0.009 
and 0.014 more than the RGA-BPNN and IPSO-SVM. 
In Fig. 8(b), the MHHO-BPNN reached 0.984, which 

Fig. 6. F1 value of three models.

Fig. 7. AUC value of three models.
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was 0.014 and 0.022 more than the RGA-BPNN and 
IPSO-SVM. Although the increase in the recall rate is not 
significant, in the context where the proportion of "high-
risk hole positions" at the engineering site is usually low, 
even a 0.01-level increase in the recall rate means that 
more potential dangerous pile holes have been identified 
and reinforced in a timely manner. The enhancement 
of this capability is particularly crucial in intensive 
operations and high-risk strata such as sandy soft soil 
in the southeast coastal areas. It not only reduces the 
risk of missed judgments but also improves the stability 
control rate of the entire construction project, offering 
significant dual values of safety and cost control.

The actual application effects of the above models are 
analyzed using the experimental data set. The historical 
data of 90 CIPP construction projects are selected. 
Among them, there are 30 with an actual risk level of 

1, 30 with an actual risk level of 2, and 30 with an 
actual risk level of 3. Historical data is input into the 
aforementioned models. The difference in output risk 
assessment and the actual risk assessment is compared. 
Fig. 9 is the evaluation accuracy of the three models. In 
Fig. 9, the accuracy of MHHO-BPNN reached 0.967. 
The RGA-BPNN was 0.944. The IPSO-SVM was 
0.922. The accuracy of the MHHO-BPNN was 0.023 
and 0.045 more than that of the RGA-BPNN and IPSO-
SVM. The relatively high overall assessment accuracy 
indicates that the MHHO-BPNN model can provide 
correct risk judgments in the vast majority of actual 
construction scenarios. This means that engineering 
managers can, without relying on subjective experience, 
achieve automatic identification of risk levels and 
recommendation of reinforcement strategies with the 
help of models, thereby improving the efficiency and 

Fig. 8. Recall value of three models.

Fig. 9. Accuracy value of three methods.
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consistency of risk assessment and reducing resource 
waste or safety hazards caused by human misjudgment.

Figure 10 displays the fitting results. In Fig. 10, the 
fitting degree of the MHHO-BPNN was 0.965. The 
RGA-BPNN was 0.938. The PSO-SVM was 0.919. The 
fitting degree of the MHHO-BPNN was 0.027 and 0.046 
more than that of the RGA-BPNN and IPSO-SVM. The 
high degree of fitting indicates that MHHO-BPNN not 
only performs well on the training samples, but also can 
reflect the relationship between the complex geological 
and construction characteristics behind the samples 
more accurately. This generalization ability enables 
the model to maintain stable performance when facing 
new projects, different strata or pile types, and can be 
reused among multiple CIPP projects. It helps to form a 
standardized risk assessment process and an automated 
decision-making mechanism, thereby promoting the 
transformation of grouting pile construction from 
"empirical judgment" to "data-driven".

Conclusion

To evaluate the performance of the proposed MHHO-
BPNN model for borehole wall stability assessment of 
cast-in-place piles, two mainstream intelligent evaluation 
models were selected as benchmarks. The first is RGA-
BPNN, which improves prediction performance by 
optimizing the weights of the BPNN using genetic 
algorithms and is suitable for nonlinear modeling 
tasks. The second is IPSO-SVM, which exhibits good 
classification performance under small-sample and 
high-dimensional conditions. However, RGA-BPNN 
is susceptible to the quality of the initial population 
and suffers from slow convergence, while IPSO-
SVM is sensitive to parameter tuning and has limited 
generalization ability.

In contrast, the proposed MHHO-BPNN model 
integrates a multi-strategy enhanced Harris Hawk 
Optimization algorithm to improve the initial weight 
search of the neural network, thereby enhancing global 
search efficiency and convergence stability. Experimental 
results show that MHHO-BPNN outperforms the other 

models in F1-score, AUC, and recall. Specifically, the 
F1-scores on the training and test sets reached 0.948 
and 0.975, respectively; AUC values reached 0.986 and 
0.997; and recall values reached 0.973 and 0.984. In 
addition, MHHO-BPNN achieved the highest accuracy 
and fitting degree, at 0.967 and 0.965, respectively. 
These results fully demonstrate that the MHHO-BPNN 
model provides high evaluation accuracy and superior 
performance, enabling reliable intelligent assessment 
of CIPP borehole wall stability. For instance, under 
complex geological conditions with rich water in weak 
sand layers, traditional reliance on empirical judgment 
may underestimate the risks of unstable hole walls, 
thereby leading to problems such as hole collapse, 
deformation of steel cages, or failure of concrete pouring. 
High-precision models can effectively identify medium 
and high-risk grade hole positions, enabling construction 
personnel to take measures such as reinforcement, wall 
protection delay, and adjustment of drilling rate in 
advance, thus avoiding accidents from the source.

This provides important data support and reference for 
the reinforcement and selection of reinforcement methods 
for CIPP. It has positive significance for improving the 
safety and quality assurance of construction projects. 
Future research directions can further explore the 
optimization potential of MHHO algorithm to improve 
its performance on more complex problems. In addition, 
the MHHO-BPNN model can be applied to stability 
evaluation problems in other fields to verify its widespread 
applicability. Future work can also focus on integrating 
this model into actual engineering management systems 
to achieve real-time and accurate stability evaluation and 
warning functions, further enhancing the intelligence of 
engineering management. The practical significance of 
the research lies in providing an efficient and accurate 
stability evaluation method for engineering construction, 
which helps to improve the quality and safety of 
engineering. Its management significance is reflected 
in providing scientific and reliable decision support for 
project management personnel, which helps to achieve 
refined management of engineering projects and optimize 
resource allocation.

Fig. 10. Fitting of several models.
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