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The high-temperature explosion and peeling of concrete have brought immeasurable negative impacts to both society and 
humanity. However, the current research on the high-temperature explosion spalling mechanism of Ultra-High-Performance 
Concrete (UHPC) is relatively shallow, and traditional prediction methods are di῿�cult to achieve e�ective prediction of 
UHPC. Therefore, this study proposes a prediction model for high-temperature explosion spalling of UHPC based on 
the Arti⿿�cial Neural Network algorithm (ANN) and conducts Hybrid Fiber (HF) performance intervention experiments. 
Veri⿿�cation showed that the accuracy of the prediction model was 95.95% based on the concrete mix ratio and 87.49% in 
compressive strength. The performance intervention test of mixed ⿿�bers showed that the explosion probability of single-
doped polypropylene ⿿�bers increased by 100% compared to mixed ⿿�bers. When the compressive strength was between 100 
and 120 MPa, steel ⿿�ber 60 kg/m3 and PP ⿿�ber 2 kg/m3 were added, and the high-temperature blast resistance performance 
of concrete specimens was the best. The results indicate that the proposed high-temperature guarantee peeling prediction 
model has ideal predictive performance, both in terms of concrete mix proportion and compressive strength. The hybrid 
polypropylene ⿿�bers and steel ⿿�bers have a positive e�ect on the high-temperature explosion resistance of concrete, and the 
size of concrete is inversely proportional to the probability of explosion spalling.

Keywords: Ultra-High-Performance Concrete, High-temperature explosion spalling, ANN, Polypropylene fiber and steel fiber, 
Compressive strength, Prefabricated buildings.

Introduction

The rapid development of urbanization and the 
increasing demand for buildings have led to the emergence 
of prefabricated buildings due to the long cycle, high 
energy consumption, and low efficiency of traditional 
buildings. Among them, Ultra-High-Performance Concrete 
(UHPC) is a commonly used material for prefabricated 
building anchor construction, prefabricated components, 
and exterior wall decoration, which has ultra-high 
mechanical performance and durability, as well as good 
toughness, bonding performance, and impact resistance 
[1-3]. However, in recent years, the occurrence of multiple 
prefabricated building fires has attracted widespread 
attention and strong concern from people. Although 
UHPC has higher Compressive Strength (CS), tighter 
microstructure, and lower water cement ratio, relevant 
studies have found that the fire resistance performance 
of UHPC is worse than that of Plain Concrete (PC) after 
high-temperature fire exposure [4, 5]. The phenomenon 
of High-Temperature Explosions (HTE) has been shown 
to reduce the load-bearing capacity of UHPC structures. 
Additionally, it has been observed that HTE can lead to 

the spalling of the protective layer and the direct exposure 
of the reinforcement to fire. This, in turn, can trigger 
early structural failure and endanger the integrity of the 
entire building’s structural system. However, the current 
mechanism of HTE for UHPC is not clear, and traditional 
concrete HTE simulation methods are inadequate for 
prediction [6]. Furthermore, the understanding of the 
HTE spalling mechanism of UHPC remains limited in 
existing studies, which primarily focus on the effect of a 
single fiber on the performance of UHPC. Therefore, this 
study innovatively proposes the use of Artificial Neural 
Network (ANN) to construct a prediction model for 
UHPC HTE spalling and designs a detailed prediction 
model from two aspects: concrete mix ratio and concrete 
CS. Finally, to further illustrate the HTE mechanism of 
UHPC and analyze its anti-HTE peeling characteristics, 
this study conducts mixed fiber performance intervention 
analysis experiments based on the constructed prediction 
model. It aims to elucidate the mechanism of concrete 
HTE, summarize the influencing factors of concrete 
HTE, and improve the HTE resistance of UHPC.

The overall structure of the study consists of four 
sections. Section 1 summarizes the industry research 
achievements and shortcomings of UHPC and ANN 
algorithms. Section 2 designs a Peeling Prediction Model 
(PPM) based on the ANN algorithm and conducts mixed 
fiber performance intervention experiments. Section 3 

*Corresponding author: 
Tel : 18005779765 
E-mail: chenhaoxu258@outlook.com



Chenhao Xu and Chunhong Guo536

validates and analyzes the proposed PPM and mixed 
fiber performance intervention experimental method. 
Section 4 summarizes the experimental results and 
indicates future research directions.

In prefabricated buildings, fires, high temperatures, 
and explosions pose a serious threat to concrete 
structures. Under high temperatures, the cross-sectional 
area of UHPC components in prefabricated buildings 
decreases, while the peeling of the protective layer 
exposes the steel bars directly to the fire. This leads 
to premature failure of structural components and 
endangers the integrity of the entire building’s structural 
system [7, 8]. Therefore, most scholars have conducted 
various studies on concrete spalling during HTEs. 
Regarding the impracticality of numerical models for 
the predicting explosive spalling of concrete based on 
physical methods in industrial applications, Liu et al. 
developed a voting set model that combines techniques 
such as Support Vector Machine (SVM), decision trees, 
and random forests. By using the XGBoost model for 
parameter analysis, it was found that Polypropylene 
(PP) fibers play a major role in preventing UHPC 
thermal spalling [9]. Iwama et al. simulated the changes 
in water content from high-strength concrete solids to 
condensed liquids and free water in micro-pores to 
elucidate the mechanism of the existence of needle-
shaped pores in high-strength concrete during HTEs. 
By using embedded humidity sensors for prediction, 
it was found that concrete pinholes can effectively 
prevent nearby explosive spalling in high-temperature 
fires [10]. Wang et al. conducted contact explosion tests 
with different explosive masses to evaluate the blast 
resistance performance of ultra early strength cement-
based self-compacting high-strength concrete slabs. 
By continuously increasing the number of explosives 
used to explode concrete slabs, it was found that the 
reinforcement ratio had a relatively small impact on their 
blast resistance performance, while the curing time had 
a positive impact [11]. To study the dynamic performance 
of reinforced composite slabs composed of ultra-high 
ductility concrete and UHPC under explosion, Liao et 
al. proposed using computer programming software 
for numerical simulation. By analyzing the parameters 
of the gauge length, reinforcement ratio, and concrete 
type based on the corresponding on-site explosion time 
delay, it was found that the maximum deflection of the 
reinforced mixed slab is inversely proportional to the 
gauge length and reinforcement ratio [12].

The application of machine learning technology has 
been extensively studied in various fields, including 
agriculture, economics, industry, and medicine. The 
potential of neural network algorithms, such as ANNs, 
in the field of construction has also garnered significant 
attention. To integrate waste management with AI, 
Mater et al. developed an ANN model to predict the CS 
of green concrete. By using Python software for model 

construction and training, it was verified that replacing 
cement with 10% fly ash can reduce the CS of concrete by 
9% [13]. Seitellari and Naser developed an ANN model 
to predict fire spalling in reinforced concrete columns. It 
took the CS of concrete, the width of reinforced concrete 
columns, the applied axial load, and eccentricity as input 
parameters, thus achieving good prediction results [14]. 
To predict the concrete CS, Moayedi et al. proposed a 
water cycle algorithm and equilibrium optimizer based 
on evaporation for simulation. It utilized a neural network 
processor for input parameters, resulting in a prediction 
accuracy of 82.59% [15]. Li et al. developed a hybrid 
model that integrates a backpropagation neural network 
and beetle antenna search algorithm to improve the 
accuracy of rock burst intensity level prediction. By using 
outlier detection and synthetic minority oversampling 
techniques for preprocessing, a prediction accuracy of 
94.3% was achieved in 173 rock burst datasets [16]. Due 
to the severe impact of chloride ion penetration on the 
durability of reinforced concrete building structures, Shin 
et al. predicted the chloride ion diffusion coefficient of 
concrete. By constructing a regression model based on 
convolutional neural networks and simulating chloride 
ion diffusion, the application value of simulation 
methods based on neural networks in the field of facility 
maintenance has been improved [17].

In summary, researchers have conducted various 
explorations on the prediction of HTEs in concrete and 
the predictive role of neural networks in concrete, and 
have achieved good results. This helps to understand 
the residual mechanical properties of UHPC at high 
temperatures and the concrete spalling caused by fires. 
However, there are still many gaps in the mechanism 
of UHPC spalling during HTEs and the influence of 
fiber content on the anti-HTE spalling characteristics 
of UHPC. Therefore, this study constructs a prediction 
model for UHPC-HTE spalling based on ANN. Due 
to the influence and induction of various factors on 
the HTE spalling of concrete, this study innovatively 
designs a concrete hybrid fiber performance intervention 
test. The purpose is to improve the HTE resistance of 
UHPC by analyzing the influence of fiber types on the 
explosion peeling of UHPC.

PPM based on ANN algorithm and mixed 
fiber performance intervention experiment

To enhance the HTE resistance performance of UHPC 
in prefabricated buildings, a comprehensive summary of 
the influencing factors of UHPC-HTE is necessary. In 
addition, it is essential to understand the anti HTE peeling 
characteristics of UHPC. To this end, the study first uses 
the ANN algorithm to construct a prediction model 
for UHPC-HTE peeling. On this basis, a performance 
intervention experiment design for UHPC hybrid fibers 
is carried out using a predictive model.
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Design of input and output parameters for PPM 
based on ANN algorithm

The advancement of computer technology has enabled 
ANN to be widely applied in multiple research fields. 
Due to the limited research on UHPC and other concrete 
HTEs, the influencing factors of UHPC-HTE spalling 
are first summarized, and then a dataset is established. 
Meanwhile, this study constructs ANN-1 and ANN-2 
models from the perspectives of concrete mix proportion 
and concrete CS, respectively. Among them, the 
influencing factors of UHPC-HTE peeling are shown 
in Fig. 1.

In Fig. 1, the explosive spalling of concrete is a 
random and complex image that is influenced by 
multiple factors. Relevant researchers have proposed the 
theories of thermal wet spalling, thermal stress spalling, 
and thermochemical spalling to explain the HTE spalling 
of concrete during HTEs [18, 19]. Therefore, this study 
mainly considers the influence of thermal wet peeling 
theory on UHPC-HTE and divides the influencing factors 
into four categories: concrete composition, thermal load, 
specimen information, and fiber information. Among 
them, the concrete composition refers to the number of 
cementitious materials other than fibers, and the thermal 

load is the load information of the specimen heated at 
high temperatures. The specimen information refers 
to the information obtained through testing after the 
specimen is formed and cured, while the fiber information 
represents the information about the fibers added to the 
concrete [20, 21]. In addition, considering the influence 
of specimen size, this study sets the specimen size, as 
shown in Fig. 2.

In Fig. 2, h represents the characteristic length of the 
specimen, which is the shortest accumulation of water 
vapor from the center of mass to the surface of the 
specimen. For the length, width, and height of concrete 
columns, this study assumes that when the height of 
the specimen is greater than or equal to the length, h 
is equal to half of the length. When the height is less 
than the length, h is equal to half the height. Meanwhile, 
based on the specified input and output parameters of 
the prediction model, this study establishes a dataset for 
model training. By referring to previous research results, 
this study summarizes the processing methods and design 
ideas of input parameters for relevant experiments [22, 
23]. On this basis, the input data of the model have been 
set with the following relevant rules, as shown in Fig. 3.

Figure 3(a) shows the Linear Heating Rate (LHR) 
variation curve of the International Organization for 
Standardization 834 Standard Fire Curve (ISO834SFC). 
Fig. 3(b) shows the LHR variation curve of the two 
end heating curves. According to Fig. 3, Rule 1 is set: 
When the concrete specimen follows the ISO834SFC 
heating, the heating temperature at 10 minutes is defined 
as the Maximum Exposure Temperature (MET), and the 
heating rate is the LHR at 10 minutes. Rule 2: When 
using a multi-stage heating method, the heating rate is 
defined as the LHR when heated to the MET. Rule 
3: This study defines the Moisture Content (MC) of 
concrete as 80% of the mass loss rate at 105 ℃ or 120 
℃. Rule 4: The phenomenon of concrete prone to HTE 

Fig. 1. UHPC HTE spalling influence factors.

Fig. 2. Schematic diagram of the length of the specimen prism.
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spalling refers to any concrete specimen in a certain mix 
proportion experiencing HTE spalling.

Based on the above rules and relevant UHPC research 
literature, a total of 648 test data are selected for training 
ANN-1 and 634 test data are used for training ANN-2 
in this study. Meanwhile, this study utilizes K-Fold in 
Scikit Learn machine learning for dataset partitioning. 
The division process is shown in Fig. 4.

In Fig. 4, the datasets of the two models are first 
segmented into 10 subsets. One subset is utilized as 
validation data for model performance evaluation, and 
the remaining 9 subsets are taken as training data for 
model training. Secondly, the 648 sets of data for the 
ANN-1 model are separated into 583 test sets and 65 
validation sets. The 634 sets of data for the ANN-2 model 
are divided into a test set of 570 sets and a validation 
set of 64 sets. The model training and validation process 
is repeated 10 times, ensuring that each subset in the 
10 subsets is accurately validated with validation data 
once. After all learning is completed, the average of the 
10 results is tested.

Construction of a PPM based on ANN algorithm
Based on the set input-output parameter rules and 

model training dataset, this study constructs a UHPC 
HTE PPM based on the ANN algorithm on the Keras 

platform. Using packaging classes for model packaging, 
and using Scikit Learn for model evaluation. The training 
process of ANN is the learning process. The Input Layer 
Neurons (ILN) receive input information and transmit 
it to the hidden meta neurons, which then process the 
input information from the upper layer and transmit it to 
the Output Layer Neurons (OLN) [24, 25]. The OLNs 
perform the final information processing and output the 
results. This process is called the learning process of 
ANN, which trains machine learning models. Therefore, 
this study establishes an ANN-PPM using a sequential 
model with multiple network layers stacked linearly and 
optimizes the model using the underlying framework 
compilation. It mainly includes defining network layers, 
setting loss functions, optimizers, evaluation criteria, 
excitation functions, and other parameters. During the 
process of building the ANN model, it is necessary to 
define layers and use them to stack a basic network 
framework [26, 27]. Considering the small amount of 
research data, low computational complexity, and strong 
parallelism, this study adopts a three-layer ANN model 
to predict the HTE peeling performance of UHPC, 
mainly including the input, hidden, and output layers. 
Therefore, the input and output of ANN-1 and ANN-2 
models are defined as shown in Fig. 5.

Figures 5(a) and 5(b) show the neural network 

Fig. 3. Schematic representation of rules 1 and 2.

Fig. 4. Predictive model training dataset segmentation process.
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architecture of ANN-1 and ANN-2 models. The 
neurons of the two models cover the basic conditions 
and influencing factors for predicting UHPC HTE 
spalling. The ILNs receive processed 648 and 634 data 
and transmit them to the hidden layer, acting as signal 
transmission intermediaries. This study sets the number 
of hidden layers for both models to be 1, and the initial 
number of hidden nodes is 20. The output layer is mainly 
responsible for receiving data from the hidden layer, and 
processing and outputting the data results by reading the 
weights and offsets of the hidden layer.

In addition, network parameters also have a significant 
impact on the model training process [28]. To make 
ANN fast and effective during the training process, 
this study limits the relevant parameters. For the batch 
size and iteration times of the model, this study sets 
the values of both to be adjusted based on the specific 
experimental results. ANN commonly uses excitation 
functions to transform multiple linear input datasets 
into nonlinear relationships. For the excitation function 
of the hidden layer, the Relu function is chosen. The 
Relu function has a fast calculation speed and a more 
ideal convergence speed [29]. The specific expression 

formula is shown in equation (1).

( ) max(0, )v vΨ = 	  (1)

In equation (1), ( )vΨ  represents the Relu function. 
1( )

1 vv
e

σ −=
+
 represents the input value. The output layer only 

needs to output the target result of "explosive peeling" 
or "non-explosive peeling". Therefore, this study uses the 
Sigmoid function as the output function, and the specific 
formula is shown in equation (2).

1( )
1 vv

e
σ −=

+
 	 (2)

In equation (2), ( )vσ  represents the sigmoid function. 
e  represents logarithm. Sigmoid is commonly used to 
solve binary classification problems, and its output is 
event probability. Therefore, the target problem can be 
set to output a result equal to 1 (explosive peeling) or 0 
(non-explosive peeling) [30]. The specific calculation is 
shown in equation (3).
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Fig. 5. Fully connected feedforward neural network architecture for model.
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In order for the neural network to output reliable 
results, it needs to undergo a training process, which is 
essentially an optimization process that minimizes the error 
function calculated from the output and target outcomes 
by identifying a set of weights and biases. Therefore, 
this study adopts Adam as the optimization algorithm 
for the ANN. This algorithm has high computational 
efficiency and is suitable for non-stationary issues with 
high gradient noise [31]. The Binary Cross Entropy 
(BCE) between the output and target result is utilized 
as the error function. Therefore, the probability of the 
output layer output result being 1 can be obtained from 
equation (4).

1
1 0

p u
p

p u
=

=  − =
	  (4)

In equation (4), p represents the probability that the 
output result is 1. u represents the output value. The 
equation (4) is further merged to yield equation (5).

1( ) (1 )u up u p pω −= −  	 (5)

In equation (5), ω  represents the weighting coefficient. 
From this, the loss function formula for the model output 
can be further obtained, as shown in equation (6).

( ) log ( ) [ log (1 ) log(1 )]H v p u u p u pω= − = − + − − 	 (6)

In equation (6), ( )H 
 represents the loss value. 

According to the loss formula, for the independent 
distribution of multiple samples, the maximum likelihood 
calculation formula can be obtained, as displayed in 
equation (7).

	 (7)

In equation (7), n denotes the number of samples. i is 
the order of samples P represents maximum likelihood. 
Therefore, the average error of the sample is calculated 
as shown in equation (8).

1 ( , )
n

i
H p u

n
ϑ = ∑ 	  (8)

In equation (8), ϑ  represents the average error of 
the sample. The parameter update formula for Adam 
gradient descent method is shown in equation (9).

1 ( )t t tb b g ϑ b+ = − ⋅∇ 	  (9)

In equation (9), bt represents the parameters of the t-th 
round. g represents the learning rate. ( )tϑ b  represents 
the loss function. ( )tϑ b∇  represents gradient. When the 
loss function is minimized, it indicates that the prediction 
result has the smallest error compared to the actual result, 
and the model performance is optimal. Therefore, the 
loss function BCE of the model is combined with the 
Adam algorithm to obtain the iterative process of the 
model, and the specific expression is shown in equation 
(10).
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	  (10)

In equation (10), b represents the bias term. l means 
the number of layers in the ANN network, with a 
value range of [1, 3]. θ  represents the regularization 
coefficient. Therefore, based on the above parameter 
settings, the prediction process of the UHPC-HTE-PPM 
based on the ANN algorithm is shown in Fig. 6.

In Fig. 6, the model first performs data import and 
preprocessing before making predictions. This study 
will save the processed data in the form of Comma 
Separated Values (CSV) and then import the CSV file 
into the network for preprocessing using the Pandas 
database. The Pandas database, as a powerful class 
library in the field of ANN learning, has many data 
processing methods [32]. Therefore, this study directly 
utilizes the method provided by Pandas to transform 

Fig. 6. Flowchart of UHPC-HTE spalling prediction model based on ANN algorithm.
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and process the data. Before using the class library for 
processing, the class library is first imported and random 
seeds are set. Then, the model is trained and predicted 
based on input parameters. After data preprocessing 
and benchmark model construction, the dataset is used 
for model training. After the training is completed, the 
program design saves the trained parameters and the best 
network model locally, so that the saved model state can 
be directly read during the prediction process. Finally, 
the network is tested and experimented using UHPC 
HTE peeling test data.

Experimental design of hybrid fiber performance 
intervention based on ANN algorithm

To analyze the influence of the fiber content of UHPC 
on its resistance to HTE spalling characteristics, based on 
the proposed ANN algorithm and a spalling prediction 
model, this study further conducts an experimental design 
for the intervention analysis of hybrid fiber performance 
in UHPC thermal explosion spalling. Firstly, PC, PP 
High Performance Concrete (PPHPC), PPUHPC, and 
Hybrid Fiber Reinforced UHPC (HUHPC) are used as 
four research objects. Two different specimen sizes are 
set up for UHPC HTE peeling tests. The dimensions of 
the specimens are 100×100×100 mm cubes (specimen A) 
and 150×150×150 mm cubes (specimen B), respectively. 
At the same time, the experiment is set to include 24 
types of concrete mix proportions, including 7 types of 
PC, 4 types of PPHPC, 3 types of PPUHPC, and 10 
types of HUHPC. Based on the experimental results and 
predictive model, further intervention experiments are 
conducted on the performance of hybrid fibers.

The tests are first heated in a standard high temperature 
furnace equipped with specimen support racks to ensure 
stable placement of the specimens at high temperatures. 
In addition, thermocouples and a data acquisition system 
are installed to monitor the temperature changes on the 
surface and inside the specimens in real-time, and a high-
speed data logger is equipped with a sampling frequency 
of 100 Hz. The study is conducted using a standard 
UHPC mix comprising of P-O 52.5 cement (1000 kg/
m³), silica fume (100 kg/m³), fine sand (600 kg/m³), 
medium sand (800 kg/m³), water (200 kg/m³), and high-

efficiency water reducing agent (2% of cement dosage). 
The mixed fibers include PP fibers (with diameter of 20 
µm, length of 12 mm, and tensile strength of 800 MPa) 
and steel fibers (with diameter of 0.2 mm, length of 13 
mm, and tensile strength of 600 MPa). The dosage of 
fibers is designed according to the test and ranged from 
0.5-2.0 kg/m³ for PP fibers and from 60-180 kg/m³ for 
steel fibers. The specific experimental process is shown 
in Fig. 7.

In Fig. 7, this study mainly selects PP fiber and steel 
fiber as the main fibers added to concrete, and sets the PP 
fiber as x and the steel fiber content as y, and represents 
the two types of fiber content in coordinate form. Based 
on practical engineering cases and a large amount of 
experimental data, this study systematically sets up 14 
fiber dosage combinations. It mainly includes (0,0), 
(2,0), (4,0), (6,0), (1,60), (2,60), (3,60), (4,60), (5,60), 
(6,60), (2,90), (2120), (2150), and (2180), and the dosage 
unit is kg/m3, which is the mass of fiber added per unit 
volume of concrete. In addition, CS mainly refers to the 
four types of concrete obtained through different mix 
proportions. To make the test specimens more suitable 
for practical construction projects, this study sets the MC 
of specimen A to be cured in water and specimen B 
to be cured in air. Compared with traditional methods, 
ANN is able to handle complex nonlinear relationships 
and consider the combined effects of multiple factors, 
thereby improving the prediction accuracy. This study 
uses ANN algorithm to construct a high-temperature 
spalling prediction model for UHPC in terms of concrete 
mix proportion and CS, and conducts intervention 
experiments by changing fiber types and additives. The 
complex nonlinear mapping between input and output 
data has been established, improving the efficiency of 
UHPC high-temperature peeling prediction.

Verification of PPM based on ANN 
algorithm and intervention analysis of hybrid 

fiber performance

To reasonably elucidate the mechanism of UHPC-
HTE spalling and verify the effectiveness of the spalling 
prediction model based on the ANN, this study first 
conducts UHPC-HTE spalling experiments based on 
the prediction model. The experimental results are used 
as data to validate the peeling model performance. The 
prediction model proposed by previous researchers 
for comparison of prediction accuracy is introduced. 
Finally, based on the designed mixed fiber performance 
intervention experiment, a mixed fiber performance 
intervention analysis is conducted.

Validation analysis of PPM based on ANN algorithm
To verify the limitations of the PPM based on the 

ANN, this study first conducts UHPC-HTE peeling tests 
and validates the model based on the results. To ensure 
the rationality and reliability of the experiment, different 

Fig. 7. Intervention test on hybrid fiber performance based on 
ANN algorithm.
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mix proportions of the PC7 group, PPHPC4 group, 
PPUHPC3 group, and HUHPC10 group are designed 
for the HTE peeling test. A total of 4 experiments are 
conducted, and 96 sets of test results are obtained. On 
this basis, ANN-1 and ANN-2 models predict concrete 
HTE spalling based on 96 sets of experimental results. 
The ANN-1 model is a prediction model for concrete 
mix proportions. Therefore, this study first analyzes the 
frequency distribution of MC and water cement ratio in 
the dataset, as shown in Fig. 8.

Figure 8(a) shows the distribution frequency of MC 

data obtained by ANN-1 from the dataset. When the MC 
of concrete is 1%-2% and 7%-8%, the data distribution 
frequencies in the dataset are 4 and 16, respectively. 
Compared to Fig. 8(b), the data distribution frequency is 
highest at a water cement ratio of 0.2-0.3. The frequency 
distribution of MC and CS of the ANN-2 CS model in 
the dataset is shown in Fig. 9.

In Fig. 9(a), the data distribution frequency is highest 
at an MC of 0-1%, with 295 sets of data. Fig. 9(b) shows 
the frequency distribution of CS, with the data at 60-
80 MPa having the highest frequency distribution. The 

Fig. 8. Frequency distribution of ANN-1 model MC and water-cement ratio data.

Fig. 10. Prediction accuracy of PPM based on ANN algorithm.

Fig. 9. Frequency distribution of ANN-2 model MC and CS.
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frequency of data distribution is inversely proportional 
to the increase in MC, while the CS shows a regular 
change. Based on the data frequency distribution of the 
two models, this study trains them separately. On this 
basis, the accuracy of model prediction is verified based 
on 96 sets of data obtained from the experimental results. 
The verification results of the two models are shown in 
Fig. 10.

Figure 10 (a) shows the prediction results of the ANN-
1. After 1000 iterations, the model is trained with a 
prediction accuracy of 96.87% and a validation accuracy 
of 95.03%. In Fig. 10(b), the training accuracy of the 
ANN-2 model is 86.75%, and the validation accuracy 
is 88.22%. This indicates that the research model can 
effectively overcome the negative impact of various 
data sources, thereby achieving high prediction accuracy. 
Grounded on the prediction results of the two models, 
this paper compares their average prediction results with 
other models. Table 1 shows the results.

In Table 1, the ANN model is more accurate and 
superior in predicting UHPC HTE spalling. Compared 
to other methods, the prediction accuracy in the training 
and validation sets increases by 52.67%, 47.74%, and 
30.32%, 22.32%, respectively. Due to the fact that the 
ANN-1 model is built on the basis of concrete mix 
proportions, it has more accurate prediction results for 
UHPC data with different mix proportions. Compared 
to other models, the accuracy of ANN-2 models based 
on different CSs is higher. This further confirms the 
effectiveness and reliability of the UHPC HTE PPM 
based on the ANN algorithm.

Analysis of performance intervention experiments 
on hybrid fibers based on ANN algorithm

Based on the 96 sets of experimental data and 4 
parameter information obtained earlier, a mixed fiber 
performance intervention experiment is conducted, 
resulting in a total of 298 specimen results. Firstly, the 
effect of various specimen sizes on the resistance of 
specimens to HTE spalling is verified. The relationship 
between the CS and MC of two different specimen sizes 
of concrete cubes and the explosive spalling of concrete 
is shown in Fig. 11.

Figure 11 shows the HTE peeling of specimens of 
two sizes. In Fig. 11(a), the 100×100×100 mm cube 
(specimen A) is prone to HTE and peeling, with a CS of 
131.2 MPa or above and an MC of 2.3% or above. Fig. 
11(b) shows the comprehensive effect of CS and MC 
on the peeling tendency of HUHPC at 150×150×150 
mm (specimen B). Specimen B is prone to HTE and 
peeling when its CS is 90.2 MPa or above and its MC 
is 3.9% or above. Comparing the peeling conditions of 
two specimens, the HTE peeling triggering condition of 
specimen B is significantly lower than that of specimen 
A. This indicates that the larger the size of the concrete 
specimen, the greater the probability of HTE peeling.

On this basis, this study conducts different fiber 
blending settings, as shown in Table 2. There are the 
dosage distribution of single doped PP fiber (x) and 
mixed doped PP fiber + steel fiber (x, y), single doped 
steel fiber (y), and mixed doped steel fiber + PP fiber 
(x, y). Considering the fiber content in actual engineering 
and HTE tests, the actual content of concrete fibers set 
may differ from the distribution of the designed content, 
but it still has regularity.

Based on the above dosage distribution, this study 
compares the effects of two groups of hybrid fibers on the 
HTE spalling of UHPC. The specific results are shown 
in Fig. 12. Fig. 12(a) shows the HTE situation of UHPC 
specimens with single PP fiber and mixed PP fiber + steel 
fiber. The relationship between fiber content in concrete 
specimens and HTE spalling fluctuates greatly and is 
complex. The HTE probability of the specimens doped 

Fig. 11. Relationship between CS and MC and concrete explosive spalling in two concrete cubes.

Table 1. Comparison of performance of different models.

Model
Accuracy (%)

Train Validation
ANN 91.81 91.63

Ref. [14] 63.45 60.26
Ref. [9] 74.33 77.69



Chenhao Xu and Chunhong Guo544

with PP fiber alone is greatly superior to that of mixed 
fibers. When the PP fiber content of the specimens is all 
0.90 kg/m3, the explosion probability of the single-doped 
fiber specimens is 100% higher than that of the mixed-
doped fiber specimens (6, 7, 8). Comparing Fig. 12(b), 
the explosion probability of specimens with single steel 
fiber and mixed PP fiber + steel fiber is significantly 
higher than that with mixed fiber. This indicates 

Table 2. Distribution of single blended fiber and blended fiber content.

Treatment
Fiber type (kg/m3)

Group A Group B
x (x,y) y (x,y)

1 0.90 - 0.00 -
2 0.91 - 46.80 -
3 1.00 - 60.00 -
4 1.82 - 78.00 -
5 7.28 - 80.00 -
6 - (0.90,23.40) 156.00 -
7 - (0.90,31.20) 243.00 -
8 - (0.90,39.00) - (0.75,30.00)
9 - (0.91,156.00) - (0.75,60.00)
10 - (1.82,156.00) - (0.90,23.40)
11 - (1.82,78.00) - (0.90,31.20)
12 - (1.00,243.00) - (0.90,39.00)
13 - - - (0.91,156.00)
14 - - - (1.00,243.00)
15 - - - (1.82,78.00)

Fig. 12. Explosion of UHPC with single doped fibers and 
blended fibers.

Fig. 13. Relationship between CS and fiber content and concrete 
explosive spalling in two concrete cubes. 



Prediction of high-temperature explosion spalling in Ultra-High-Performance concrete based on intervention… 545

that hybrid fibers can improve the blast resistance of 
UHPC, and the combined effect between different fibers 
increases the threshold range of concrete explosion, 
thereby reducing the risk of UHPC HTE spalling. This 
study further compares the relationship between the HTE 
spalling, CS, PP fiber content, and steel fiber content of 
two sizes of specimens.

Figure 13(a) shows the HTE peeling of a HUPC cube 
with a size of 100×100×100 mm. Compared to mixed 
fiber specimens, the peeling of single fiber content is 
more pronounced. With the mixing of the two fiber 
contents, the specimen shows almost no HTE peeling. 
In Fig. 13(b), the HTE spalling of HUPC cubes with 
dimensions of 150×150×150 mm shows that in the 
mixed fiber content specimens, the proportion of steel 
fibers is relatively low. When the proportion of PP fibers 
is high, the explosion spalling of the mixed specimens is 
more severe. Correspondingly, the CS of concrete also 
decreases with the increase of PP fiber content. The 
analysis results of two sizes of specimens show that 
when the CS is between 100-120 MPa, steel fiber 60 
kg/m3, and PP fiber 2 kg/m3 are added, HUPC specimens 
can meet the requirements of engineering practice, and 
the high-temperature blast resistance performance of 
concrete is the best.

Conclusion

To explore the mechanism of UHPC HTE spalling 
and the influence of hybrid fibers on the intervention of 
UHPC anti-explosion performance, this study proposed a 
UHPC-HTE spalling prediction model based on the ANN 
algorithm. ANN-1 and ANN-2 models were constructed 
from the perspectives of concrete mix proportion and 
CS, and mixed fiber performance intervention tests 
were conducted. The prediction accuracy of the model 
based on the concrete mixture reached 96.87%, and 
the prediction accuracy of the CS model reached 
88.22%. Blended fibers (PP fibers and steel fibers) have 
enhanced the high-temperature blast resistance of UHPC. 
Compared with the mixed fiber sample, the explosion 
probability of the single-doped PP fiber sample increased 
by 100%. The UHPC specimens doped with 60 kg/m³ 
steel fibers and 2 kg/m³ polypropylene fibers had the best 
high-temperature blast resistance performance when the 
CS was between 100 and 120 MPa. In addition, there 
was an inverse relationship between specimen size and 
spalling probability, with larger specimen size resulting 
in higher spalling probability.

Furthermore, the study's findings indicated that PP 
fibers undergo a phase transition at elevated temperatures, 
resulting in the formation of minute pores. These pores 
function as escape routes for water vapor, thereby 
reducing the internal vapor pressure. The steel fibers, 
on the other hand, provide additional tensile strength and 
toughness, enhancing the concrete's resistance to bursting. 
The probability of spalling of concrete is reduced by 

the hybrid fibers when they act synergistically. As the 
specimen size increases, the heat transfer path becomes 
longer, the internal heat build-up increases and the 
risk of spalling rises. These findings provide important 
theoretical support and engineering guidance for the 
application of UHPC in high-temperature environments.

However, this study exclusively examined the impact 
of mixed straight steel fibers and PP fibers on the 
HTE resistance of UHPC, omitting a comprehensive 
evaluation of the influence of steel fiber shape on the 
explosion resistance performance of concrete. Therefore, 
subsequent work will optimize the model and explore the 
role of fiber shape in the blast resistance performance 
of UHPC to weaken the negative impact of concrete 
HTE spalling.
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