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Grey relational analysis of the multiple responses, including Reynolds number, Nusselt number, heat transfer (W), heat 
transfer coefficient (W/m2 K), and heat flux (W/m2), was done as part of experiments based on a Taguchi orthogonal array. 
The best parameter levels was calculated and selected based on GRA on basis of the Grey Relational Grade (GRG). An 
ANOVA has been used to identify factors that significantly contribute to the response based on grade. Experiments was con-
ducted at the optimum predicted conditions (Al2O3) and the response was found as follows; Reynolds Number (592), Nusselt 
Number (2.5), Heat transfer (Q) (510), Flux (W/m2) (17.8) and Heat transfer Coefficient (W/m2 K) (394). The experimental 
value was found to be correlated with the predicted values of Reynolds number (610), Nusselt number (2.6), heat transfer (Q) 
(530), heat transfer coefficient (W/m2 K) (415), and heat flux (W/m2) (18.5), respectively. The experimental data were found 
to have an excellent knowledge under the recommended conditions. Our study is a preliminary step towards developing a 
substantially effective Al2O3-based base fluid to enhance the performance of the heat transfer process in a copper-based ser-
pentine shape heat exchanger.
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Introduction

The phenomenon of superior thermal conductivity 
is a pivotal area in many power plant sectors. There 
is a pragmatic shift from the macroscale to nanoscale 
due to scientific and technological advancements. 
Nano systems involving inorganic nanoparticles and 
base fluids are consistently studied and developed to 
cater the current industrial needs. A significant amount 
of research being done on nanoparticles to improve 
thermal conductivity. Technically these nanoparticles 
enhance the thermal conductivity, viscosity, but 
these nanoparticles purely rely on synthesis process, 
nanoparticle morphology, concentration and dimensions, 
morphology of nanoparticle [1]. The heat exchanging 
capability and thermal performance of nanofluid based 
heat exchangers relies on multiple factors spanning from 
materials, process economics, and effective and safe 
disposal of used nanofluids in order to mitigate ecological 
deterioration, mandating the implementation of advance 
and cost-effective heat transfer enhancement techniques 

[2]. Literatures have reported that utilization of diverse 
nanofluids for enhancing performance in thermal 
applications in industrial sectors and it has received a 
lot of attention recently as a result of their excellent 
thermal properties such as effective and quick transfer of 
heat from lesser areas or across temperature disparities 
[3]. Thermophoresis, Brownian movement, increased 
surface-to-volume ratio, higher thermal conductivity, 
and other distinctive properties of nanofluids [4]. Choi 
and Eastman proposed the name “Nanofluid” from their 
investigation by blending nanoparticles in conventional 
base fluids [5], subsequently, since then there has been 
significant focus on developing nanoparticles based 
nanofluids over decades [6]. New technologies are 
established by exploring different Na towards creating 
robust, durable, lightweight, wear resistant, and with 
high thermal attributes, materials composite materials 
with a diverse range of industrial uses by exploring 
innovative techniques and materials. These composite 
materials have its own limitations with a great need 
for materials with properties with enhanced wear 
resistance, high specific strength, and stability at extreme 
temperatures over the past few decades. 

Literatures have reported utilization of inorganic and 
organic nanoparticles in heat transfer materials such as 
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Al2O3 [7], Fe3O4 [8], CuO [9], SiO2 [10]. TiO2 [11], 
diamond [12], grapheme [13], CNT [14], MWCNT 
[15], etc. Al2O3 based nanofluids has been investigated 
over decades for its efficient and effective heat transfer 
characteristics. Literatures have reported a plethora of 
scientific investigations on Al2O3 nanofluids over its 
unique thermophysical properties, but Al2O3 based 
nanofluids has its own limitations such as limited 
thermal conductivity upon increasing nanoparticle 
concentration, viscosity of the base fluid, pressure drop 
during operations. Despite manufacturing and production 
sectors employ various optimization techniques, each and 
every methodology/technique has its own limitations. To 
enhance the advantages of using Al2O3 nanofluids in 
the context of their overall effectiveness while taking 
into consideration the hydrodynamic and heat transfer 
behaviour of nanofluids, efforts are being made to 
establish optimal processing parameters and conditions 
to forecast the optimum. 

Scientific fraternity is consistently exploring and 
working on optimization techniques to minimize the 
amount of trials in any operating procedures. Statistical 
techniques are effective towards determining the 
proportions of elements in a combined application and 
subsequently it assists to predict the interactions between 
various components and the desired result [16]. Many 
procedures, including the full factorial design [17], 
central composite design (CCD) [18], design of Box-
Behnken [19], Plackett-Burman design [20] and Taguchi 
design [21] methods, are employed as the DoE method. 
In this study, Taguchi optimization and was carried 
out for optimizing multiple performance features such 
sonication time (minutes), nanoparticle concentration 
(wt%) and flow rate (mL/minute) [22] for heat transfer 
analysis of Al2O3 based nanofluid in the copper Fractal 
Tree Micro Channel. GRA methodology was employed 
for optimizing multiple response characteristics (Reynolds 
number [23], Nusselt number, Heat transfer (W), 
coefficient (W/m2K), and flux q (W/ m2), ANOVA [24] 
and test for confirmation was carried out to warrant 
and confirm the investigational outcomes. 

Materials and Methods 

Nanoparticle and Nanofluid synthesis
The chemicals and reagents for the study was of 

standard analytical grade. The Al2O3 nanoparticles 
was purchased from Nanoscience, Chennai. The Al2O3 
nanoparticles were synthesized by the physical vapour 
deposition method. 

Process parameters 

Experimental setup 
A detailed scientific experimental study was conducted 

to assess and decipher the efficacy of heat transfer 
phenomenon in a copper based Fractal Tree Micro 
Channel of diameter [25]. 

Convective rate of heat transfer performance was 
studied by circulating various concentrations of Al2O3 
based nanofluids and at various flow rate. Al2O3 
nanofluids are injected into the Fractal Tree Micro 
Channel circular heat sink from the container, and the 
real-time temperature and pressure during [26] at the 
inlet was recorded. The exit temperature at the exit of 
microtube was also recorded to quantify the rate of heat 
transferred by the nanofluids, after passing throughout 
the circular heat sink [27]. The presence of revolving 
fan to cool the nanofluids and the submersible pump’s 
speed alters the flow rate of the nanofluid supports to 
complete nanofluids circulation. 

Taguchi optimization 
Three process variables such as sonication time 

(minutes), nanoparticle concentration (wt%) and flow 
rate (ml/minute) were selected for our optimization 
study. The process variables and its limits used in 
this investigation is represented in Table 1. The 
experiments are conducted using orthogonal array L9 
as presented in Table 2. In this study, five responses 
were taken into consideration and the obtained response 
values after experiments was represented in Table 2. 
Optimization was conducted by calculating S/N ratio 

Table 1. The Taguchi orthogonal design with coded and uncoded values.

Run Sonication  
time Concentration Flow 

rate
Sonication  

time Concentration Flow rate

1 1 1 1 15 0.25 0.45
2 1 2 2 15 0.3 0.5
3 1 3 3 15 0.35 0.55
4 2 1 2 20 0.25 0.5
5 2 2 3 20 0.3 0.55
6 2 3 1 20 0.35 0.45
7 3 1 3 25 0.25 0.55
8 3 2 1 25 0.3 0.45
9 3 3 2 25 0.35 0.5
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was calculated using larger the better is sought in-order 
to obtain maximization of the characteristic response, 
S/N ratio normalization, calculating GRC, subsequently 
GRA and graded. ANOVA was performed to identify 

the influencing variable and optimal conditions were 
predicted to perform test of confirmation [28]. Finally 
the test was carried out to warrant and confirm the 
experimental outcomes [29]. Fig. 1 represents the 
Taguchi optimization process.

Step 1 S/N ratio calculation 
In our study, optimization was conducted by calculating 

S/N ratio using larger the better is sought in-order to 
obtain maximization of the characteristic response using 
Eq. (1). 

    (1)

Step 2 Normalization 
When data has to be scaled into a suitable range 

and distributed evenly for further analysis, normalisation 
is a transformation that is applied to a single input 
value. In order to utilise the variability and reduce the 
effect of utilising different data, yij is normalised as Zij 
(0≤Zij≤1) using the formula below. Eq. (2) was used 
for normalization of S/N values.

       (2)

Step 3 Grey Relational Analysis 
GRA method is used to convert each variable’s 

outcomes into a single grey relationship grade across all 
factors, subsequently this approach assist us to identify 
the most significant processing parameters from every 
trial with many outcomes. The minimal and maximal 
S/N ratios in Taguchi’s study were standardised and each 
calculation was given a weight. The derived grey relation 
grade corresponds to the most significant relationship 
grade for each sequence. For each trial, it was considered 

Table 2. The responses of the optimization experiments (Taguchi orthogonal design).

Run Sonication 
time Concentration Flow 

rate RN NN HT Q(W) HTC  
(W/m2 K) HF q(K)

1 15 0.25 0.45 898 3.5 565 385 12.5
2 15 0.3 0.5 987 3.8 578 392 15.5
3 15 0.35 0.55 998 4.3 589 412 16.3
4 20 0.25 0.5 1008 3.25 525 262 9.5

5 20 0.3 0.55 1018 3.6 545 275 14.5

6 20 0.35 0.45 817 2.9 515 265 8.5
7 25 0.25 0.55 795 2.85 560 453 17.5
8 25 0.3 0.45 610 2.6 530 415 18.5
9 25 0.35 0.5 785 2.7 556 435 14.5

Fig. 1. Taguchi optimization process.
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that ξ = 0.5. The quality of the machining operation 
might be affected by the grey relational grade; typically, 
the GR grade with high values was regarded to be the 
best relational grade across all. Additionally, a process 
will be closer to its ideal value if the grey relational 
grade is greater. Eq. (3) is used to obtain GRC. 

   (3)

Where, the no. of experimental data items n and the 
no. of responses are denoted by j=1,2...n; k=1,2...m. The 
reference sequence is yo(k), and the specific comparison 
sequence is denoted as (yo(k)=1, k=1,2...m); yj(k). The 
absolute value of difference is denoted as Δoj between 
yo(k) and yj(k). The smallest value Δmin of yj(k). Δmax 
is the largest value of yj(k) and ξ is the distinguishing 
coefficient.

Step 4 Grey relational grade calculation 
Subsequent to GRA, the outcomes are used to 

calculate the GR grade (Eq. 4)

      (4)

where yj is the GR grade for the j th experiment and 
the no. of performance characteristics is denoted by k. 
Eq. (5) represents the equation to calculate the grey 
relational grade.

Step 5 Optimal factor determination and its level 
combination

The better the product quality, the higher the grey 
relational grade; as a result, the factor influence may be 
evaluated using the grey relational grade, and the ideal 
level for each controllable factor can also be established.

Step 6 ANOVA Step 
Step 7 Predict optimum condition.

Results and Discussion 

Taguchi optimization may be an effective and 
reliable method, for a process involves a high number 

Table 3. S/N ratio and Normalization of the response.

S/N ratio of the responses Normalization of the responses

RN NN Q (W) (W/m2 K) q (K) RN NN Q (W) (W/m2 K) q (K)
59.066 10.881 55.041 51.709 21.938 0.004 1.018 0.021 0.037 0.392
59.886 11.596 55.239 51.866 23.807 0.001 0.941 0.02 0.036 0.343
59.983 12.669 55.402 52.298 24.244 0.001 0.843 0.019 0.034 0.333
60.069 10.238 54.403 48.366 19.554 0 1.096 0.024 0.055 0.467
60.155 11.126 54.728 48.787 23.227 0 0.991 0.022 0.052 0.357
58.244 9.248 54.236 48.465 18.588 0.007 1.237 0.025 0.054 0.503
58.007 9.097 54.964 53.122 24.861 0.008 1.262 0.021 0.03 0.319
55.707 8.299 54.486 52.361 25.343 0.018 1.405 0.023 0.033 0.309
57.897 8.627 54.901 52.77 23.227 0.009 1.343 0.022 0.031 0.357

Table 4. Grey Relational Coefficients of the responses, Grade and Rank.

GRC of the responses
Grade RankReynolds 

Number
Nusselt  
Number Q (W) (W/m2 K) q (K)

0.064 0.198 0.065 0.065 0.086 0.096 6
0.064 0.171 0.064 0.065 0.082 0.089 8
0.064 0.145 0.064 0.065 0.082 0.084 9
0.064 0.236 0.065 0.066 0.092 0.105 5
0.064 0.187 0.065 0.066 0.084 0.093 7
0.064 0.363 0.065 0.066 0.096 0.131 4
0.064 0.401 0.065 0.065 0.081 0.135 3
0.064 1.000 0.065 0.065 0.080 0.255 1
0.064 0.607 0.065 0.065 0.084 0.177 2
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of variables. The Taguchi approach allows for the 
identification of multiple sets of optimum levels for each 
response, permitting to optimize the process using better 
conditions. Table 2 represents the responses of obtained 
after experimental investigation (Reynolds number, 
Nusselt number, Heat transfer coefficient (HTC) (W/
m2K), Transfer (W), and Heat flux q(W/m2)). Table 3, 
and Table 4 shows the S/N ratio and Normalization, 
GRC calculation, grade and rank of the response using 
larger the better. Fig. 2 and Fig. 3 represents the main 
effects plots of mean and S/N ratio of the responses 
based on grade analysis.

All the responses increase with increase in sonication 
time till level 3, while the response increases with 
concentration rise till level 2. The flow rate effect was 
found to be decrease with increase from level 1 to level 
3. In order to determine the ideal parametric settings for 
any mechanical procedure, Taguchi’s SN ratio analysis 
is an effective tool. The properties of the statistics were 
represented using the SN ratio, which indicates the 
proportion of desirable to undesirable data. The data 
for mean and S/N ratio was found to follow the same 
pattern and the optimal predicted conditions were found 
to be level 3 (25 minutes of sonication time), level 2 
(0.25% of nanofluid concentration) and level 1 (0.45% 

of flow rate of nanofluid). Increase in the sonication 
time to level 3 cause’s complete disaggregation of the 
nanoparticles, ultimately enhancing the thermal heat 
transfer properties. At optimum predicted conditions of 
Al2O3, yields highest Reynolds Number (610), Nusselt 
Number (2.6), Heat transfer (W) (530), Coefficient 
(W/m2 K) (415) and Flux (W/m2) (18.5) respectively. 
Literature reports that sonication time (incubation time) 
has a direct influence on the morphology, agglomeration 
characteristics, viscosity, pressure drop, heat transfer 
enhancement and thermal conductivity. Sonication time 
has a linear correlation with the number of individual 
nanoparticles. Moreover, beyond a certain sonication 
time, suspension thermal conductivity decreases, 
mandating the optimum range of the suspension . 
Thermodynamics and fluid dynamics are used to 
assess the effective viscosity of the nanoparticles in 
nano-dispersion base fluid while considering the impacts 
of nano-confinement, the interrelationships between 
nanoparticles and fluid, particle density, particle size, 
and its impacts on ecosystems, nanoparticle volume 
proportion, particle kinetics, the interfacial nanolayer, 
and volume fraction. Moreover, one of the most 
influencing factor dictating heat transfer behaviors of 
the nanofluids are the particle concentration and the 

Fig. 2. The main effects plots of mean responses based on grade analysis.
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flow conditions. The highest Reynolds Number (RN) 
(610), Nusselt Number (NN) (2.6), Heat transfer (W) 
(530), Coefficient (W/m2 K) (415) and Flux (K) (18.5) is 
achieved due to better nano-particle dispersion in the base 
fluid at longer sonication time, at lower concentration 
and average flow rate. 

Moreover, it was established that the Reynolds and 
Nusselt number increased in parallel with a raise in the 
nanoparticle concentration in the nanofluid .Experimental 
data documented that increase in the thermal conductivity 
(Heat flow, heat transfer, and heat transfer coefficient), 
attributed at higher nanoparticle concentration increased. 
Increased kinetic momentum of the particles due 
to more particle collisions and Brownian motion at 
higher concentrations might contribute for the increase 
in thermal conductivity. Moreover, research has found 
that the viscosity of the nanofluid increases as the 
concentration of nanoparticles does as well .

Our results with respect to responses (Reynolds 
Number, Nusselt number, HTC) is correlated by the 
literatures reported Literature report that HTC and the 
NN has linear relation with RN. 

The sonication time was found to be influencing 
parameter based on delta value for both the responses 
(Mean and S/N ratio). Fig. 2 and 3 represents the process 
parameters that mainly effects mean response and S/N 
ratios. Prolonged exposure of the base fluid containing 

nanoparticles to sonication results in the breakdown of 
larger particles into smaller particles, the strong van der 
Waals forces leads to small particle agglomeration and 
sedimentation, enhanced dissolution, and a lesser impact 
of zeta potential. Table 5 Literature has reported that 
aluminum-based nanoparticles disintegrate better than 
other inorganic nanoparticles (copper and manganese)
[29]. SEM analyses have reported average particle sizes 
around 50-74 nm; moreover, literature has reported that 
the decreases in thermal conductivity leads to particle 
size decrease below 50 nm. 

GRA has been employed for simultaneous optimization 
of multi-machining characteristics. Using GRA, 
optimization of the multi-machining characteristics was 
converted into single characteristic called grey relational 
grade. represents the ANOVA analysis of the responses.

Table 6 and Table 7 ANOVA analysis was carried out 
using the grade obtained from GRA, have revealed that 
the sonication time factor was found to be significant 
(P value = 0.033). It was established from ANOVA for 
GRG values, the characteristics of multiple machining 
that the significantly affecting the parameters was found 
to be sonication time and concentration. Fundamentally, 
if the appropriate machining features were better, the 
GRG value will be larger. The optimal calculated GRG is 
0.255, which is higher than the average grade for the nine 
trials. Consequently, by applying the current technique, 

Fig. 3. The main effects plots of S/N ratio of the responses based on grade analysis.
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machining qualities have been improved greatly.
From the regression analysis (Eq. (5)) it was found 

that sonication time and nanoparticle concentration was 
found to have positive influence on the response (grade), 
whereas flow rate was found to have negative response 
on the response (grade). 

Grade = 0.158 + 0.0099 sonication time + 0.187 
           concentration - 0.567 flow rate  (5)

Experiments was conducted at the optimum predicted 
conditions (A3B2C1) and the response was found to 
have RN (592), NN (2.5), HT (W) (510), HTC (W/m2 
K) (394) and Heat flux (K) (17.8). The experimental 
value was found in correlated with the predicted value 
of RN (610), NN (2.6), HT (W) (530), HTC (W/m2 
K) (415) and HF (K) (18.5) respectively.

Conclusion

Taguchi optimization and GRA is an efficient 

method adopted in majority of the manufacturing and 
processing industries. There is a consistent quest for 
efficient process to quickly transfer heat from narrow 
variation zones/process employing base fluids with 
excellent thermal properties. The experimental results 
from the optimization, the following salient points are 
featured below;

1. Al2O3 based nanofluids was found to be efficient 
in transferring heat within the copper-based, serpentine-
shaped microtube.

2. Based on ANOVA analysis, sonication time was 
found to be influencing parameter towards the response 
(p value = 0.033), followed by flow rate (p value = 
0.118) and finally nanoparticle concentration (p value 
= 0.435).

3. GRA method was employed for optimizing multiple 
response characteristics (Reynolds number, Nusselt 
number, Heat transfer (W), HTC (W/m2K), and HF 
q(W/m2)). 

4. The optimum predicted conditions was found to 
be Al2O3

5. Experiments was conducted at the optimum predicted 
conditions (Al2O3) and the response was found as 
follows; Reynolds Number (592), Nusselt Number (2.5), 
Heat transfer (W) (510), HTC (W/m2 K) (394) and HF 
(W/m2) (17.8). 

6. The experimental value was found to be in 
correlation with the predicted values of Reynolds 
number (610), Nusselt number (2.6), heat transfer (W) 
(530), HTC (W/m2 K) (415), and heat flux (K) (18.5), 
respectively. 
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Residual error 2 2.112 2.112 1.056 2.570

Total 8 82.174 100
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Level Sonication 
time Concentration Flow  
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Rank 1 3 2
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time Concentration Flow rate
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2 -19.29 -17.84 -18.54
3 -14.77 -18.07 -19.85

Delta 6.19 1.27 3.22
Rank 1 3 2
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