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An electric furnace, inside which desired temperatures are kept constant by generating heat, is known to be a difficult system
to control and model exactly because system parameters and response delay time are varied as the temperature and position
are changed. In this study, the heating system of ceramic drying furnaces with time-varying parameters is mathematically
modeled and control parameters are estimated by using a recursive least-square method. The generalized predictive control
with exponential weight (GPCEW), which always guarantees the stability of closed loop systems and can be effectively applied
to internally unstable systems, is employed in the temperature control of ceramic drying electric furnaces and its performances
is experimentally verified. It is proven that temperature tracking of GPCEW is more stable than the generalized predictive
control (GPC) and rapidly settles down by increasing the prediction horizon.
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Introduction

Ceramic products are usually dried under conditions
where temperature and moisture are kept constant
during the drying process. When the drying speed is
too fast or not steady, ceramic products crack due to
the residual stress caused by the un-even shrinkage and
the high pressure. In order to avoid this mechanical
defect; therefore, a temperature control based on a
knowledge of the drying temperature distribution inside
the furnace may be needed.

An electric furnace used for drying green ceramics is
a system that controls the furnace interior to a fixed
temperature with the heat supplied by a heat generation
unit. Since the electric furnace system has the charac-
teristics where system parameters and response delay
time vary as the surrounding and control temperatures
change, it is difficult to model and control the system
accurately. 

Although a PID (Proportional, Integral, and Deriva-
tive) control is generally used in the processes controll-
ing the temperatures and most industrial fields, it has a
disadvantage because workers have to specify and tune
up the PID control parameters, based on their experi-
ence, whenever the dynamic characteristics of the
process or environmental conditions change. However,
an adaptive control automatically finds the self-tuning
parameters associated with the changes in the dynamic
characteristics of the process and environmental condi-

tions. 
Since the 1970s, the long range predictive control

commonly used to model prediction control has em-
ployed the receding horizon control method [1-6]. On
the other hand, generalized predictive control (GPC)
[7, 8] is generally known to be the most effective
control method in for those predictive control fields.
GPC has the advantage that it can work well even in
the conditions where real processes are difficult to
control. 

Although GPC has the advantage of practical avai-
lability, its stability analysis is performed using unlimit-
ed area samples. GPC cannot be employed in systems
that have samples in a limited area only and which are
unstable. In order to overcome this sampling problem
so that the GPC can always guarantee a control
function even in a limited area, many investigationhave
been carried out [9-12]. The generalized predictive
control with exponential weight (GPCEW) maintains
the stability of a closed loop system and effectively
works in a internally unstable system.

In this study, the control law called by a generalized
predictive control with exponential weight (GPCEW) is
applied to the temperature control system of a ceramic
drying electric furnace and has been experimentally
verified by showing temperature tracking performance.

Generalized predictive control with 
exponential weight

Predictive control of a model composes predictive
equations based on the model used. It is very important
to determine the model effectively, because it affects
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the robustness of the system according to the accuracy
of the description of the model. CARIMA (controlled
auto-regressive integrated moving average) model is
considered in GPC as follows: 

 (1)

where are y(t) is the measured output, u(t) is the control
input,  and  are sampling
intervals which are defined as t = 0, 1, 2, ……. The
polynomials are expressed by backward shift operators
as follows : 

 (2)

 (3)

 (4)

and . Furthermore, ξ(t) is an uncorrelated
random sequence. 

A diophantine equation for a generalized CARIMA
model is written as follows : 

 (5)

In order to make the model simple,  is
assumed. Then Eq. (5) is written as follows :

 (6)

where  and  are the polynomials
uniquely determined by  and the degree of

 is j-1. Ej and Fj are obtained by the equation
next to the recursive Diophantine equation Eq. (6) :

 (7)

where R = Ej+1, S = Fj+1 ( j = 1, 2, ……, N). 
Subtracting Eq. (6) from Eq. (7), Eq. (8) is obtained :

 (8)

Eq. (8) can be rewritten as follows : 

 (9)

where . In Eq. (9), as 
included the terms of , , ……, the ( j−1)th
term of  is zero, = 0, and = 0.

Solving S in Eq. (9),

 (10)

Hence, from the coefficient of the q term in Eq. (10),
f0 = rj, Si = fi+1 − ai+1rj (i = 0~degS) are obtained.

The control law minimizes the cost function defined
by the following form :

 

 (11)

where y(t + j) is a future plant output, w(t + j) is a
future setting point, N1 is a minimum prediction
horizon, N2 is the maximum prediction horizon, μ( j)
ρ( j) are control weights. The choice Nu = 1 of makes
the calculation process tremendously simple. Rewriting
Eq. (11) in vector form,

=  (12)

is obtained.
For given exponential weights to the tracking error

and control input, the following forms can be consider-
ed : 

 for tracking error 

 for control increments (13)

If  and  are defined to improve the
efficiency of the control, Eq. (13) can be rewritten as
follows : 

 (14)

In Eq. (12) 

 (15)

 (16)

where 

 (17)

 (18)

 (19)

 (20)

 (21)

In Eq. (15), GΔU and F are the forced response of
the process and the free response of the process,
respectively. The forced response is generated by the
control input which has not been decided. The free
response is calculated by the past u already known and
y of the present and past times. G is a lower-triangular
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of  degrees :

 (22)

where  and j = 1, 2, ..., N2.

Mathematical modeling of the electric furnace

Modeling 
The modeling of the thermal process of an electric

furnace heating system can be developed from the
basic mechanisms of heat transfer, namely conduction,
convection, and radiation. However, to simplicity the
modeling and the usage in the control algorithm, the
modeling includes only convection. The energy balance
equation can be derived as follows: 

 (23)

where C is the thermal capacitance, R is thermal
resistance, p(t) is the power supplied, y(t) is the inlet
and temperature, yc(t) is the ambient temperature. Eq.
(23) can be transformed into Eq. (24) by a Laplace
transformation as follows : 

 (24)

where 

 (25)

Therefore, the transfer function G(s) is derived as
follows : 

 (26)

where U(s) is the amount of heat input, output Y(s) is
the temperature output, and time constant T is the
multiple of R and C. 

Hence, if ZOH (zero order hold) is used, the discrete
the transfer function G(z−1) is obtained by:

 (27)

where b = R(1−e−T/RC) and a = e−T/RC.

Parameter Estimation 
In order to design dynamic control systems, it is very

important to determine a model, which can describe the
dynamic characteristics. A system identification is used
to determine the model using experimental data.
During the system identification process, 3 points are
considered. Firstly, it should have the least number of
parameters. Secondly, the parameters should be
uniquely determined by the observation. Finally, the
control design should be easy and simple. 

Generally, the estimation function for a parameter
identification J is expressed as follows:

 (28)

In this paper, an electric furnace heating system is
assumed as a ARMAX (Auto Regressive Moving
Average with exogenous inputs) model and system
parameters are estimated by RLS (Recursive least-
square). Furthermore, in controller design, the control
input is determined using estimated parameters. The
ARMAX model for the electric furnace heating system
is written as follows: 

A(q−1)y(t) = B(q−1)u(t) + c(q−1)e(t)  (29)

where e(t) is the estimation error and 
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−m  (31)

If C(q−1) is assumed to be 0 (zero) in Eq. (29), Eq.
(29) can be rewritten as follows:

y(t + 1) = −a1y(t) − a2(t − 1) −… − any(t − n + 1)

+ b0y(t) + b1u(t + 1) + … + bmu(t−m) (32)

Supposing the discrete transfer function of the plant
to be a first order system and expressing Eq. (32) in
matrix form, Eq. (33) is obtained: 

y(t + 1) = [−a b] = θTφ(t−1)  (33)

where the parameter vector  and measurement vector
 vector are expressed as follows:

 (34)
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Experiments

As shown in Fig. 1, an electric furnace temperature
control system consists of five modules: an electric
furnace unit containing heating elements, a temperature
sensing module employing a K-type thermocouple, a
board for A/D conversion and digital output, a solid
state relay (SSR) for controlling heat power, and a
personal computer adjusting the SSR output and
showing graphically the performance.

A firebrick, 9.5 cm × 11.5 cm × 6.5 cm, is heated. Six
thermocouples are located at the center of each side of
the brick. The thermocouples can be changed in length
so that it is possible to measure temperatures in various
positions.

Generally, temperature control needs a long time
because the response of a temperature control system is
delayed. In this system, the cooling process is operated
by natural convection. 

The analysis data was gathered every 10 seconds and
100 measured temperatures were averaged to reduce
errors in sensing. As the coefficients of input and
output parameters were not known, one of the para-
meters and one of the b parameters had be estimated.
The effect of the design parameters N

u
, N1 and N2 were

known from the experiment. In this experiment, λ = 1,
P(0) = 1000I and = 0 were initially defined.

Figure 2 shows the response of the GPC when N1=1,
N2=1, N

u
=1, and λ=1. When the initial temperature was

28 oC and the setting point, 150 oC, was kept until the
response was measured at 5200 seconds, the initial
overshoot, rise time, steady state error, and settling
time were 11.4 oC, 930 seconds, 0.81 oC, 3430 seconds,
respectively. When the setting point was changed to
300 oC at 5200 seconds and kept until the measure-
ments were finished, the overshoot, rise time, settling
time, steady state error were 19.29 oC, 990 seconds,
2740 seconds, and 0.91 oC, respectively. 

Figure 3 shows the response of GPCEW in the
special case shown in Fig. 2. The weighting parameters
were set as α = 1, ρ = 0. When the setting point was
kept at 150 oC until the measuring time was 5200

seconds, the initial overshoot, rise time, settling time,
steady-state error were 10.14 oC, 940 seconds, 2920
seconds, and 0.8 oC, respectively. When the setting
point was varied to 300 oC at 5200 seconds, the
overshoot, rise time, settling time, and steady-state
error were 18.55 oC, 1070 seconds, 3350 seconds and
0.8 oC, respectively. 

When the design parameters were changed to N1=1,
N2=10, N

u
=2, the responses of GPC and GPCEW are

shown in Fig. 4 and Fig. 5, respectively. When the
setting point was 150 oC, the initial overshoot, rise
time, settling time, and steady state error in GPC were
5.57 oC, 1570 seconds, 3030 seconds, and 0.68 oC,
respectively. In GPCEW, however, they were 5.85 oC,
1140 seconds, 2700 seconds, and 0.48 oC, respectively.
When the setting point was changed to 300 oC at the
measuring time 5200 seconds, the overshoot, rise time,
settling time, steady state error in GPC were 15.38 oC,
1000 seconds, 2350 seconds, 0.9 oC, respectively.
However, the overshoot, rise time, settling time, steady
state error in GPCEW were 6.61 oC, 1140 second, 1960
seconds, 0.67 oC, respectively.

θ̂ 0( )

Fig. 1. Schematic diagram of a furnace control system.

Fig. 2. GPC (generalized predictive control). Tuning parameter:
N1=1, N2=1, Nu=1, λ=1. Initial temp: 28.16 °C, Rise time: 780s,
Overshoot: 13 oC 

Fig. 3. GPCEW (generalized predictive control with exponential
weighting). Tuning parameter: N1=1, N2=1, Nu=1, λ=1. Weighting
parameter: α=1, ρ=0. Initial Temp: 27.6 °C, Rise Time: 840 s.
Overshoot: 2.9 oC 
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As seen in the results above, when the control
horizon N

u
 was increased in GPC, the overshoot and

settling time were decreased by 5.83 oC, 220 seconds,
respectively while the rise time was increased by 640
seconds. When the N

u
 was increased in GPCEW,

however, the overshoot, rise time, and settling time
were decreased by 1.3 oC, 120 seconds, 100 seconds,
respectively. 

Comparing the responses between GPC and GPCEW
when the control interval N

u
 was increased and the

weight parameter α was given, although the rise time
of GPCEW became a little bigger, the overshoot and
settling time were greatly decreased. The GPCEW in
considering a time delay made the rise time less that
when the time dely was neglected. 

Conclusions

An electric furnace heating system, which operates
slowly and has time-varying control parameters, was
mathematically modeled. Then, a GPCEW control
algorithm was employed to control the drying
temperature of a ceramic electric furnace. The control
parameters were estimated by a recursive least-square
method. From this research, the following conclusions
were obtained: 

Although the rise time of GPCEW was increased a
little more than that of GPC, the overshoot, settling
time, and steady state error were decreased so that it
can effectively control furnace temperatures. 

While the increase of the prediction horizon in
GPCEW makes the rise time a little bigger, the
overshoot, steady state error, and settling time became
smaller. 
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