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Aluminum alloy are widely adopted material for engineering applications in automobile, aircraft and marine industries. Its
high strength to weight ratio attracts modern industry to extend its applications in various domains. For producing various
components, turning is the most reputed machining operation. The method of manufacturing directly impacts the product
accuracy. The present research deals with fabrication and optimization study in dry turning of LM25 Aluminium Metal
Matrix Composites (AMMCs). For AMMC fabrication, 10 wt.% of micro and nano Al2O3 ceramic particle is added as
reinforcement. Hybrid Grey Relational Analysis (GRA) coupled Principal Component Analysis (PCA) technique is suggested
for finding optimization results. Experiment was conducted with cutting speed (V), feed rate (f), and depth of cut(d) as input
parameters. Based on optimization, feed rate dominates the entire turning process compared to cutting speed and depth of cut
and 12.95% improvement of GRA was achieved at the end of confirmation experiment. 

Key words: Al2O3, Ceramic composites, Hybrid optimization, LM25 alloy, Turning, GRA.

Introduction

This modern world visualized the new epoch in
materials research. Specifically, development and
demand of light materials is much needed in
automobile industry. Aluminum alloy fulfills the needs
of automobile industry due to its high strength and
light weight. The present world is still in a hurry to
develop different combination of lightweight materials
in numerous applications [1]. Thus, the enhanced
material property required in material application is
fulfilled by Metal Matrix Composites (MMCs). MMCs
offer enhanced material properties like minimum
thermal conductivity and expansion, greater specific
strength and stiffness etc. Aluminum Metal Matrix
Composites (AMMCs) are widely used in huge
applications due to its enriched material properties such
as high strength, high fatigue etc. In aircraft and
automotive sectors, AMMCs are used to reduce the
parts weight, fuel and less pollution aspects [2-6]. 

LM25 aluminum alloy is the most widely used in
automotive industry for the fabrication of cylindrical
blocks, heads, wheels and other cast parts. Addition of
reinforcement in AMMCs induces more strength and
stiffness and offers high machinability [7-10]. Successive
reinforcement characterization is noted by chemical

composition, volume fraction and distribution of
reinforcement particle in AMMCs [11]. Naguib G.
Yakoub [12] studied the effect of nano zirconia in Al-
7075 fabricated by stir casting process. He identified
that ZrO2 reduces wear rate and friction coefficient and
exhibited good tribological performance. Manjunatha
and Anil kumar [13] studied the mechanical
characterization of aluminum Al6061/ ZrO2/Zirconium
sand hybrid composite. They stated that ZrO2 particles
in AMMCs increased the tensile strength and hardness.
Addition of 10 wt.% of ZrO2 and 2 wt.% of ZrO2 sand
induces high strength when compared with base metal.
Suresh et al. [14] investigated on LM25 alloy for
evaluating mechanical and wear properties. They
pointed that, hardness values of LM25 alloy reinforced
with B4C (Boron Carbide) improved when compared
with LM25 alloy. They also stated that, inclusion of
Graphite (Gr) as reinforcement reduced the wear
resistance in LM25-B4C. At the same time, Gr in
LM25-B4C reduces hardness and material properties
due to spongy nature of Gr (Graphite).

Surendaran et al. [15] examined the tribological
behavior of LM25 with nano aluminum oxide (Al2O3).
Better tribological behavior of LM25 was observed
when 5 wt.% of Al2O3 was used amongst the other
compositions selected due to even dispersion of Al2O3

in base metal. Elango and Raghunath [16] investigated
the wear and friction resistance in LM25 alloy
reinforced with Silicon Carbide (SiC) and Titanium
dioxide (TiO2). They stated that, co efficient of friction
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(COF) reduced with respect to raise in TiO2. Wear rate
of LM25+SiC+ 5% TiO2 was minimum while it was
compared with LM25 alloy. In material research,
selection of fabrication technique, methods of
machining and machining parameters are the key
factors. Properties of composites are controlled by the
varying reinforcement and its percentage level.
Commonly selected wt.% of reinforcement is 5 wt.%
while SiC, Al2O3 and B4C are used as reinforcements in
AMMCs. Drilling, turning and friction stir processing
(FSP) are the common machining techniques adopted
by researchers in AMMCs [17]. Periasamy et al. [18]
analysed the mechanical properties in Al7075 by FSP
technique and SiC and Gr added were selected as
reinforcements. Experimental observations denote the
formation of lubrication layer on the specimen due to
addition of soft Gr. Significant improvement in
hardness was identified in Al7075 due to the inclusion
of SiC as reinforcement. 

Kannan et al. [19] performed turning operation in
Al7075 alloy fortified with SiC and Gr as
reinforcement and found that addition of 3 wt.% SiC
and 7 wt.% of Gr were identified as optimal
reinforcement. Also, they pointed that parameters of 40
m/min cutting speed, 0.075 mm/rev feed and 0.3 mm
depth of cut offered dominant impact on surface
roughness of turned AMMCs and tool wear. At
optimum condition, surface roughness improved by
16% and tool wear reduced by 22%. Hence performing
optimization is much needed in material machining
research. Optimization in machining parameters results
in high precision outputs. Numerous research works
were carried out in optimization techniques in which
ANOVA, GRG (Grey Relational Grade) and GRC
(Grey Relational Coefficient) are the most familiar
techniques [20]. TOPSIS technique is also used in
machining parameter optimization. In material turning
and optimization, machining parameters such as feed,
depth and cutting parameters played a key factor [21-
24]. Dhanalakshmi and Rameshbabu [25] performed an
investigation about influencing parameter on LM25
under dry condition. They reported about obtaining

high GRG value in wet machining. Based on the
experiments, 500 rpm cutting speed, 0.2 mm/min feed
and 0.6 mm depth of cut were the optimum parameters
while machining in CNC Machine.

On reviewing the past study, numerous researches
were performed on AMMCs under various circumstances.
Lot of research is carried out in improving materials.
Based on past examination, it is evident that selection
of reinforcement was done in the base of wt.% only.
Hence influence of reinforcement size on machining
need to be investigated. This paper is forced on
optimization of machining parameters and size of
reinforcement. For the present research, LM25 Al was
selected and Al2O3 was chosen as reinforcement.

Materials and Methods

AMMCs were fabricated by stir casting process with
10 wt.% of micro and nano Al2O3 particles as
reinforcement. The average particle size of micro and
nano alumina is 25 µm and 40 nm respectively.
Initially a base metal is melted using electrical
induction heating furnace in a graphite crucible at 720
°C. The mixing of Al2O3 particles along with base
metal is done by mechanical stirring mode at 650 rpm.
Lastly, it is poured into a zircon coated steel die. The
hardness of the fabricated composite specimen was
found as 36 HRB and 58 HRB for micro and nano
Al2O3 reinforced composites respectively. Fig. 1 shows
the experimental setup. Fig. 2 and 3 represents the
SEM image of micro and nano Al2O3 particles
reinforced AMMCs at different magnifications and it is

Fig. 1. (a) Experimental setup. (b) Stir casting setup.

Table 1. Machining factors with levels.

Symbol Control factors Level 1 Level 2 Level 3

A Alumina size Micro Al2O3 Nano Al2O3

V
Cutting speed 

(m/min)
100 125 150

f Feed (mm/rev) 0.1 0.15 0.2

d Depth of cut(mm) 0.5 0.75 1.0
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observed that no pores have been observed and indicate
better wettability between the matrix and reinforcement
particles. This research focused on performing turning
operation in LM25 Al MMC under dry condition.
Kirloskar Turn Master all geared type lathe machine is
used to perform turning operation. Selected parameters
for performing turning operation are based on earlier
findings [19, 26-29] and given in Table 1. For

optimization, L18 orthogonal array was selected.
Surface roughness (Ra), cutting force (Fz), tool wear
(VB) and tool temperature (T) were the output
parameters which are measured by TR100 surface
roughness tester, Kistler dynamometer (SN type), tool
maker’s microscope and tool temperature thermocouple
setup respectively as shown in Fig. 4. Calculated
experimental values are represented in Table 2.

Fig. 2. SEM image of micro Al2O3 reinforced composites (a)
100×; (b) 500×; (c) 3300× and (d) 3700×.

Fig. 3. Fig. 5 SEM images of nano Al2O3 reinforced composites:
(a) 100×; (b) 500×; (c) 3700× and (d) 6000×.

Table 2. Calculated experimental values.

S. No A
‘V’ 

(m/min)
‘f’

 (mm/rev)
 ‘d’ 

(mm)
 ‘VB’
 (mm)

 ‘Ra’ 
(µm)

 ‘Fz’ 
(N)

‘T’
 (°C)

1 1 100 0.1 0.5 0.10 1.32 60.55 44

2 1 100 0.15 0.75 0.08 1.34 153.66 57

3 1 100 0.2 1.0 0.1 1.62 262.06 57

4 1 125 0.1 0.5 0.06 0.99 37.91 45

5 1 125 0.15 0.75 0.09 1.08 68.23 55

6 1 125 0.2 1.0 0.17 1.32 257.14 75

7 1 150 0.1 0.75 0.08 0.97 42.15 56

8 1 150 0.15 1.0 0.13 1.25 52.78 62

9 1 150 0.2 0.5 0.15 1.37 56.86 68

10 2 100 0.1 1.0 0.09 1.28 152.3 43

11 2 100 0.15 0.5 0.06 1.42 87.29 48

12 2 100 0.2 0.75 0.90 1.17 238.76 57

13 2 125 0.1 0.75 0.06 0.97 146.65 52

14 2 125 0.15 1.0 0.10 1.39 120.57 58

15 2 125 0.2 0.5 0.13 2.36 101.2 60

16 2 150 0.1 1.0 0.14 1.09 123.56 68

17 2 150 0.15 0.5 0.38 1.34 156.78 72

18 2 150 0.2 0.75 0.57 1.67 187.45 78
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GRA Combined Through PCA Technique

Grey Relational Analysis (GRA)
GRA is used to find the optimal machining

parameters and cutting conditions while using multi
response complex problems [30, 31]. Rank system is
used to find the best optimal values. The following
effective steps are used for finding GRC and GRG. 

STEP 1: Calculation of S/N ratio is the first step of
GRA. This article concentrated on minimizing the
response for optimal conditions. 

 (1)

N = No. of observations and y = observed data.

STEP 2: Normalization is the second stage in GRA
technique. The response value obtained from S/N ratio
normalized is by normalization formula. Suitable
formula for obtaining the normalized value is represented
in eq. (2). 

 (2)

xi(k) = Value of normalization, k = performance
characteristics, i = no. of experiments

 
STEP 3: The expression used to compute GRC

value is given below. 

 (3)

Here, ε(k)= grey relational coefficient 

j = 1, 2, 3… n 
k = 1, 2, 3…. m 
n = experimental data 
m = observed performance characteristic. 
Distinguishing coefficient (ξ) = 0.5. 

STEP 4: Average value of GRC is used to find the
GRG value. The expression used to determine the
GRG is presented in Eq. (4). 

 (4)

Where k = performance characteristics, i = no. of
experiments

Principal component analysis (PCA)
The current work is focused on performance

characteristics and finding suitable input parameters.
Shihab et al. [32] carried an investigation and studied
about GRA and PCA in turning of alloy steel and
found both GRA and PCA to be effective methods of
optimization. Following steps are adopted for PCA
technique [33].

STEP 1: In PCA, normalization of output
performance is considered as first step. Here  is
considered as output responses. The normalization
value of output performance is calculated by Eq. (5)
and (6).

 (5)

(6)

Where k = 1, 2, 3…n

n = no. of output characteristics 
i = 1, 2, 3…m
m = no. of Experiments

STEP 2: The second step of PCA technique indicates
the determination of covariance matrix, Eigen values
and Eigen vectors. The covariance matrix is expressed
in Eq. (7)

(7)

The Eigen values are denoted by λk. It is calculated by
Eq. (8).

 (8)
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Where Vik = Corresponding Eigen Vectors
M= Covariance matrix.

STEP 3: The final step of PCA indicates the
individual principal component formation and it is
expressed in Eq. (9)

(9)

Results and Discussion

The main aim of this experimental work is to
diminish the VB, Ra, FZ and T. Based on Eq. (1), S/N
ratio of output responses was calculated and plotted in
Table 3.

GRG Analysis
The normalization values of measured output values

were determined by using Eq. (2) and normalized
values are plotted in Table 4. The corresponding GRC
values were determined by using Eq. (3) and it is
represented in Table 5. In this work, GRA and PCA are
coupled with each other to evaluate the optimal cutting
conditions. Later, PCA is used to determine the
influencing parameters among all values. The correlation
coefficient amount targeted quality characters are
calculated and presented in Table 6 and its performance
features are given in Table 7. The Eigen vectors of
each performance feature are plotted in Table 8.
Performance characteristics of principal components
are determined by adding Eigen vectors and it is given
in Table 9. Based on plotted Table 7, principal

component one features high as 57.87% compared to
remaining three principal components. After calculation
of weighted values, GRG values were found by using
Eq. (4). The ranks of parameters with GRG values are
presented in Table 10. Based on GRG, maximum GRG
represents best quality characteristics. 

Ymk = i

n

YikVik

Table 3. S/N ratio of response.

Expt. No. VB Ra FZ T

1. 20.000 -2.411 -35.642 -32.869

2. 21.938 -2.542 -43.731 -35.117

3. 20.000 -4.190 -48.368 -35.117

4. 24.437 0.087 -31.575 -33.064

5. 20.915 -0.668 -36.680 -34.807

6. 15.391 -2.411 -48.203 -37.501

7. 21.938 0.265 -32.496 -34.964

8. 17.721 -1.938 -34.449 -35.848

9. 16.478 -2.734 -35.096 -36.650

10. 20.915 -2.144 -43.654 -32.669

11. 24.437 -3.046 -38.819 -33.625

12. 0.915 -1.364 -47.559 -35.117

13. 24.437 0.265 -43.326 -34.320

14. 20.000 -2.860 -41.625 -35.269

15. 17.721 -7.458 -40.104 -35.563

16. 17.077 -0.749 -41.838 -36.650

17. 8.404 -2.542 -43.906 -37.147

18. 4.883 -4.454 -45.458 -37.842

Table 4. Normalization value.

Expt. No. VB Ra FZ T

1. 0.952 0.748 0.899 0.971

2. 0.976 0.734 0.484 0.600

3. 0.952 0.532 0.000 0.600

4. 1.000 0.986 1.000 0.943

5. 0.964 0.921 0.865 0.657

6. 0.869 0.748 0.022 0.086

7. 0.976 1.000 0.981 0.629

8. 0.917 0.799 0.934 0.457

9. 0.893 0.712 0.915 0.286

10. 0.964 0.777 0.490 1.000

11. 1.000 0.676 0.780 0.857

12. 0.000 0.856 0.104 0.600

13. 1.000 1.000 0.515 0.743

14. 0.952 0.698 0.631 0.571

15. 0.917 0.000 0.718 0.514

16. 0.905 0.914 0.618 0.286

17. 0.619 0.734 0.470 0.171

18. 0.393 0.496 0.333 0.000

Table 5. Computed GRC value.

Expt. No. VB Ra FZ T

1. 0.913 0.665 0.832 0.946

2. 0.955 0.653 0.492 0.556

3. 0.913 0.517 0.333 0.556

4. 1.000 0.972 1.000 0.897

5. 0.933 0.863 0.787 0.593

6. 0.792 0.665 0.338 0.354

7. 0.955 1.000 0.964 0.574

8. 0.857 0.713 0.883 0.479

9. 0.824 0.635 0.855 0.412

10. 0.933 0.692 0.495 1.000

11. 1.000 0.607 0.694 0.778

12. 0.333 0.777 0.358 0.556

13. 1.000 1.000 0.508 0.660

14. 0.913 0.623 0.576 0.538

15. 0.857 0.333 0.639 0.507

16. 0.840 0.853 0.567 0.412

17. 0.568 0.653 0.485 0.376

18. 0.452 0.498 0.428 0.333
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Maximum GRG value was obtained in experiment
four. Among 27 experiments, the maximum GRG of
0.968 was achieved. The optimum parameter for
machining LM25 is evaluated from GRG and it is
plotted in Table 11. From Table 11, A1V2f1d1 is
indicated as optimum condition for dry turning of
AMMCs. Micro Al2O3 is preferred when compared to
nano reinforcement. Likewise, 125 m/min cutting
speed, 0.1 mm/rev feed and 0.5 mm depth of cut were
identified as optimum parameters and represented in
Fig. 5. Based on analysis of variance technique,
identification of dominant factor is much easier [34-
36]. From Table 11, it is evident that feed rate is the
most dominant factor followed by alumina size and
cutting speed. 

By utilizing the optimal parameters, confirmation

Table 6. Correlation coefficients.

Correlation 
coefficients

VB Ra FZ T

VB 1 0.4049 0.4228 0.7000

Ra 0.4049 1 0.4370 0.2883

FZ 0.4228 0.4370 1 0.3483

MRR 0.7000 0.2883 0.3483 1

Table 7. Computed Eigen value.

Principal 
component

λk

Explained variation
 (%)

PC1 2.3147 57.87

PC2 0.8374 20.94

PC3 0.5609 14.02

PC4 0.2869 7.17

Table 8. Computed Eigen vectors. 

Response PC1 PC2 PC3 PC4

VB 0.5629 0.3515 0.095 0.742

Ra 0.4423 -0.604 0.6497 -0.1327

FZ 0.4658 -0.4616 -0.754 -0.0382

MRR 0.5201 0.5465 0.02 -0.6561

Table 9. Contribution value for the PCs.

PC Contribution

VB 0.317

Ra 0.196

FZ 0.217

MRR 0.271

Table 10. Rank based on GRG.

Expt. No. GRG Rank 

1. 0.857 3

2. 0.688 9

3. 0.614 13

4. 0.968 1

5. 0.797 7

6. 0.551 15

7. 0.863 2

8. 0.733 8

9. 0.683 10

10. 0.810 4

11. 0.797 6

12. 0.486 17

13. 0.802 5

 14. 0.682 11

15. 0.613 14

16. 0.668 12

17. 0.515 16

18. 0.424 18

Table 11. GRG Response table.

Machining 
Parameters

Level 1 Level 2 Level 3 Max-Min Rank

A 0.7502 0.6443 - 0.1060 2

V 0.7086 0.7355 0.6477 0.0878 3

f 0.8279 0.7021 0.5617 0.2662 1

d 0.7388 0.6767 0.6763 0.0625 4

*Optimal Parameters = A1V2f1d1

Table 12. Confirmation test.

Initial 
parameters

Optimal Parameters

Prediction Experiment

Setting level A1V1f1d1 A1V2f1d1 A1V2f1d1

VB (mm) 0.10 -- 0.06

Ra (µm) 1.32 -- 0.99

F (N) 60.55 -- 37.91

T (°C) 44 -- 45

GRG 0.857 0.961 0.968

Improvement in GRG = 0.111

Fig. 5. Mean response plot for GRG.
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experiment was carried out to examine the accuracy of
the optimization result [37]. Table 12 indicates the
confirmation test. Improvement in GRG was registered
by 12.95% when compared with initial experiment. 

Analysis of variance
ANOVA study was computed to identify the most

influencing factor on each parameter. Response surface
methodology (RSM) is a key factor for researchers

Table 13. ANOVA - VB.

Source DF Adj SS Adj MS F-Value P-Value

Model 13 0.652908 0.050224 1.24 0.459

Linear 4 0.347981 0.086995 2.14 0.240

A 1 0.186462 0.186462 4.59 0.099

V 1 0.020425 0.020425 0.50 0.517

f 1 0.181475 0.181475 4.47 0.102

d 1 0.000395 0.000395 0.01 0.926

Square 3 0.152920 0.050973 1.25 0.402

V×V 1 0.102066 0.102066 2.51 0.188

f×f 1 0.002660 0.002660 0.07 0.811

d×d 1 0.052465 0.052465 1.29 0.319

2-Way Interaction 6 0.150525 0.025087 0.62 0.716

A×V 1 0.014908 0.014908 0.37 0.577

A×f 1 0.019203 0.019203 0.47 0.530

A×d 1 0.037921 0.037921 0.93 0.389

V×f 1 0.006879 0.006879 0.17 0.702

V×d 1 0.001523 0.001523 0.04 0.856

f×d 1 0.066531 0.066531 1.64 0.270

Error 4 0.162542 0.040635

Total 17 0.815450

R2=90.07%

Table 14. ANOVA - Ra.

Source DF Adj SS Adj MS F-Value P-Value

Model 13 1.66971 0.128439 3.83 0.102

Linear 4 0.34733 0.086833 2.59 0.189

A 1 0.01064 0.010638 0.32 0.603

V 1 0.14296 0.142962 4.27 0.108

f 1 0.13960 0.139602 4.17 0.111

d 1 0.02528 0.025276 0.75 0.434

Square 3 0.34456 0.114855 3.43 0.132

V×V 1 0.04863 0.048630 1.45 0.295

f×f 1 0.05863 0.058635 1.75 0.256

d×d 1 0.24125 0.241255 7.20 0.055

2-Way Interaction 6 0.61817 0.103029 3.08 0.148

A×V 1 0.24780 0.247803 7.40 0.053

A×f 1 0.24216 0.242164 7.23 0.055

A×d 1 0.21534 0.215344 6.43 0.064

V×f 1 0.07721 0.077206 2.30 0.204

V×d 1 0.00173 0.001727 0.05 0.831

f×d 1 0.35613 0.356128 10.63 0.031

Error 4 0.13398 0.033495

Total 17 1.80369

R2=92.57%
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aimed at developing quadratic model. For output
response and arithmetic model development, RSM was
utilized [38, 39]. To get better optimization results, VB,
Ra, Fz and T empirical model was developed and

expressed in Eq. (10) to Eq. (13). 

VB = 3.47 - 0.177 A - 0.0537 V - 8.7 f + 0.68 d 
+ 0.000265 V×V + 11.3 f×f - 2.00 d×d - 0.00313 A

Table 15. ANOVA - Fz.

Source DF Adj SS Adj MS F-Value P-Value

Model 13 84493.3 6499.5 5.04 0.065

Linear 4 35284.5 8821.1 6.84 0.045

A 1 10993.4 10993.4 8.52 0.043

V 1 3099.6 3099.6 2.40 0.196

f 1 8818.4 8818.4 6.84 0.059

d 1 5276.7 5276.7 4.09 0.113

Square 3 7006.7 2335.6 1.81 0.285

V×V 1 1386.9 1386.9 1.07 0.358

f×f 1 3544.1 3544.1 2.75 0.173

d×d 1 2183.5 2183.5 1.69 0.263

2-Way Interaction 6 21078.4 3513.1 2.72 0.176

A×V 1 2517.9 2517.9 1.95 0.235

A×f 1 2371.7 2371.7 1.84 0.247

A×d 1 574.1 574.1 0.44 0.541

V×f 1 230.5 230.5 0.18 0.694

V×d 1 2060.2 2060.2 1.60 0.275

f×d 1 5294.0 5294.0 4.10 0.113

Error 4 5160.6 1290.2

Total 17 89653.9

R2=94.24%

Table 16. ANOVA - T.

Source DF Adj SS Adj MS F-Value P-Value

Model 13 1703.14 131.011 3.82 0.103

Linear 4 1113.45 278.362 8.12 0.033

A 1 24.22 24.222 0.71 0.448

V 1 715.10 715.103 20.86 0.010

f 1 397.10 397.105 11.58 0.027

d 1 9.24 9.241 0.27 0.631

Square 3 30.01 10.004 0.29 0.830

V×V 1 15.82 15.825 0.46 0.534

f×f 1 0.36 0.364 0.01 0.923

d×d 1 14.79 14.787 0.43 0.547

2-Way Interaction 6 185.75 30.958 0.90 0.567

A×V 1 93.85 93.853 2.74 0.173

A×f 1 30.75 30.750 0.90 0.397

A×d 1 0.16 0.156 0.00 0.949

V×f 1 1.39 1.392 0.04 0.850

V×d 1 10.09 10.087 0.29 0.616

f×d 1 8.21 8.214 0.24 0.650

Error 4 137.14 34.285

Total 17 1840.28

R2=92.55%
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×V + 2.29 A×f + 0.644 A×d - 0.0277 V×f 
- 0.0026 V×d + 11.45 f×d (10)

(Ra= 2.98 - 1.726 A + 0.0100 V - 17.0 f + 0.42 d 
- 0.000183 V×V + 52.9 f×f + 4.30 d×d+ 0.01275 A×V
+ 8.13 A×f - 1.534 A×d + 0.0928 V×f - 0.0028 V×d 
- 26.48 f×d (11)

Fz = 418 + 82 A - 7.34 V - 3779 f + 736 d + 0.0309 V
×V + 13018 f×f - 409 d×d + 1.286 A×V - 805 A×f 
- 79 A×d - 5.1 V×f - 3.03 V×d + 3229 f×d (12)

T= 87 - 13.3 A - 1.07 V + 103 f + 11 d + 0.00330 V×V
+ 132 f×f - 33.6 d×d + 0.248 A×V - 91.7 A×f 
- 1.3 A×d + 0.39 V×f + 0.212 V×d + 127 f×d (13)

The computed value of ANOVA for VB, Ra, Fz and
T are given in Table 13, 14, 15 and 16 respectively.
From table values, it is evident that the R2 value of VB,
Ra, Fz and T are 90.07, 92.57, 94.24 and 92.55%
respectively. Hence based on R2 value represents the
significant model development [40-42]. 

Mean response plot for all the parameters was drawn
for further analysis. Fig. 6 to Fig. 9 represents the main
effect plot for VB, Ra, Fz and T respectively. To
minimize tool wear, parameters such V=150 m/min,
f=0.2 mm/rev, d=0.75 mm and nano size reinforcement

are suitable factors. For all the output response, nano
Al2O3 is preferred. Nano reinforcement offered uniform
distribution of the particles. High depth of cut results in
higher wear. So, moderate depth would reduce the tool
wear. Reinforcement like hard alumina increases the
hardness of the AMMCs. Hence, nano reinforcement
offered good strength to the MMCs and does not affect
the tool. 

For roughness, V=100 m/min, f=0.15 mm/rev, d=0.5
mm and nano size reinforcement are the optimum
parameters. For cutting force, V=100 m/min, f=0.20
mm/rev, d=1 mm and Nano size reinforcement are the
optimum parameters and for temperature, V=150 m/
min, f=0.20 mm/rev, d=1 mm and Nano size
reinforcement are the optimum parameters. Table 17
represents the responses of VB, Ra & Fz. It is evident
that for VB, feed is the dominant factor compared with
cutting speed and depth of cut. At the same time, for
Ra, cutting speed is the most dominant factor. It
dominates 50.25% when compared with other
parameters. For Fz, cutting speed dominated at 32%.
At high cutting speed, temperature raise could affect
the tool and surface [25]. Similarly for T, cutting speed
was found as dominant factor with 51.29%. These are
in line with similar findings made by Kannan [19].

Fig. 6. Mean response plot- VB.

Fig. 7. Mean response plot- Ra.

Fig. 8. Mean response plot - Fz.

Fig. 9. Mean response plot- T.
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Conclusion

Based on LM25 AMMCs turning, the following
conclusions are made and listed below.

1. To determine the dominating parameter in dry
turning of LM25 AMMCs, GRA coupled PCA
optimization technique was suggested and feed rate
was found as dominating parameter.

2. The optimal parameter based on GRA coupled
PCA technique are 125 m/min cutting speed, 0.1 mm/
rev feed and 0.5 mm depth of cut. For better
reinforcement composition, micro Al2O3 is preferred
when compared with nano reinforcement.

3. Based on ANOVA analysis, the influencing factor

of each parameter was found i.e., feed is the dominant
factor VB and cutting speed for Ra, Fz and T
respectively.

4. RSM analysis represents effectiveness of the
regression model. Based on RSM, it was found that, R2

value of VB, Ra, Fz and T are 90.07, 92.57, 94.24 and
92.55% respectively. It represents significant model
development.

5. After conducting confirmation experiment,
improvement in GRG was registered by 12.95% when
compared with initial experiment.
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