
Journal of Ceramic Processing Research. Vol. 23, No. 5, pp. 656~665 (2022)

(Received 13 March 2022, Received in revised form 28 May 2022, Accepted 4 June 2022)

https://doi.org/10.36410/jcpr.2022.23.5.656

656

J O U R N A L O F

Ceramic
Processing Research

Neural intelligence and regression analysis in modeling and optimization of flank

wear during turning of Monel K500

N. Manoj Krishnaa,
*, M. Selvarajb, Arul Kulandaivelc and S. Lakshmana Kumard

aDepartment of Mechanical Engineering, Thangavelu Engineering College, Chennai-600097, India
bDepartment of Mechanical Engineering, SSN College of Engineering, Chennai-603110, India
cDepartment of Mechanical Engineering, Agni College of Technology, Chennai-600130, India
dDepartment of Mechanical Engineering, Sona College of Technology, Salem-636005, India

The current research article develops artificial neural network (ANN) and regression analysis for prediction and optimization
of flank wear. For this, the flank wear results were observed from live experiments conducted under the various levels of input
variables like speed, feed and depth of cut. The ANN model architecture: 9-4-1 was observed as suitable for this analysis. The
experimental results were utilized to train, test and validate the network. Neural intelligence tool was used to perform ANN
analysis. The prediction capability of the regression model was estimated based on R-value (correlation coefficient) among
experiment’s and model prediction’s values. The predictions by ANN were found to be in precise among the predictive models
as obtained from the R: squared value and correlation value. The insert life was also evaluated with respect different
machining time at various level of machining factors. The flank wear, which is equal to equal to 0.35 mm, was considered as
criteria to decide the life of the insert. Further, the machining factors were optimized based on desirability approach.
Therefore, these predictive models and optimized factors would pave the aero industries to predict as well as optimize the flank
wear. The result of the experiments has revealed the feed rate as noteworthy variable than speed and depth of cut.
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Introduction

Monel K500 is important one among nickel-based
super alloys owing to few of its great advantages, such
as good mechanical strength, good resistivity to
corrosion and erosion, high creep strength and fatigue
strength. Monel K500 finds applications in aircraft,
heat exchanger, jet engines and gas turbine applications
owing to its great properties. As these materials are
applied in raucous working environments like more
pressure and temperature, this machined surface should
have good integrity so that it can retain its properties in
that working condition. However, these alloys are not
easy to machine with integrity and has worst insert life
and wear during processing the operation. Nimonic C
263 is a difficult to machine material and it finds
application in aeronautic, missiles, heat transfers due to
its properties. The selection of the machining variables
are depend on the properties of the material, insert
material and other machining process control variables.

Therefore, the selection of cutting insert and machining
factors plays vital role to improve the machining
features such as integrity, surface roughness and insert

rate of wear etc., The model for prediction of roughness
by ANN and RSM in turning AA6061 alloy using
coated carbide tool [1]. They have reported that back
propagation algorithm was found to be the supreme to
train the model and 3-8-1 architecture was used. tool
life with help of FEA analysis coupled with wear rate
empirical and the computational time was lowered
notable [2]. Further, they have reported that usui’s
equation had few demerits to predict the rate of wear
and the empirical model made as function of von mises
stress showed enhanced predictive capability to prognostic
wear rate. The turning experiment on AISI 420 and
examined the contribution effect of speed, feed and
depth of cut on forces and roughness [3]. The feed and
depth of cut were noted to be noteworthy factor on
roughness and force respectively. Further, RSM and
ANN were used to make predictive models. The
machining characteristics of AISI D3 steel in turning
process by ceramic, coated ceramic and carbide inserts
[4]. The speed, feed and depth of cut were chosen as
controlling factors on the machining attributes: force
and roughness. Further, they have modeled the parameters
using ANN and RSM.

The turning experiments on Nickel A286 using PVD
coated insert. The machining variables are taken as
speed, feed and depth of cut [5]. The machined surface
condition and flank wear were the machining performance
characteristics. Optimum parameters were identified to
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attain minimum roughness and wear and they reported
that, PVD coated insert performed well than uncoated
insert. The turning experimental trails under low initial
lubrication system on cupronickel 7030 alloy [6] and
evaluated the tribological test and insert wear. They
have reported that, the about 73% insert wear reduced
in comparison with dry and flood lubrication system. 

The super alloys are utilized in aero industry owing
to high strength, great resistivity of corrosion and long
creep life. However, its machinability is low owing to
its unique properties like high cutting force and
temperature generation with great hardening rate and
these properties would rapidly deteriorate cutting insert
[7]. They have estimated the wear rate in turning
Inconel 718 using wavelet packet transform. Further,
the insert wear was monitored during operation with
incorporating sensor monitoring system. The tungsten
alloys are suitable to make missiles, boats and race cars
etc, However, machining of these materials are tough
and need to maintain with integrity of the machined
surface. Therefore, they have made turning experiments
and analyzed the insert wear development and wear
mechanisms [8]. Further, they have developed tool
wear rate model based on analytical calculations and
named it as Zhao model.

The micro turning on titanium alloy and they have
optimized the processing factors based on RSM- BBD
(Box-Behnken Design). The machining variables like
speed, feed and depth of cut were chosen [9]. The
developed mode was found to be effective to predict
tool life and the predicted values are closely matched
with experimental values. The uniform design methodology
has reduced the number of experimental trails [10].
They have developed a model based on regression
analysis to predict the input and output relationship.
The studied the machining characters in the form of
insert wear and roughness and the experimental values
were validated with predictive model.

Segreto et al. [11] have said that the super alloy
posses low conductivity and difficult to cut. Therefore,
identification of correct level of machining variables is
to be found to improve the machining attributes. They
have developed a model using artificial neural networks
and the machining variables were optimized using
particle swarm optimization.Jurkovic et al. [12] were
obtained dataset in turning the aluminum alloy and the
experiment results were used as dataset to design and
develop a predictive model to predict the surface
roughness. Full factorial design was used with 81
experiments to 27 runs, in which, 27 experiment trails
were used to do machining. The experimental results
were trained, validated and tested and best result is
achieved by back propagation multilayer feed forward
networks using. The BR algorithm was used for
training.

Francis Xavier et al. [13] have investigated the
impact of machining factors in turning titanium alloy

using RSM and ANN. The surface roughness and MRR
were considered as output. ANOVA confirmed that
cutting speed has highest contribution on roughness and
DOC has high contribution for MRR.The experimental
values compared with RSM and ANN predicted model.
The less percent error was reported with ANN model
when compared with experimental and RSM developed
model. 

Ezhilarasan et al. [14] developed a novel machine
learning technique such as ANN and cuckoo algorithm
to optimize the attributes of brass alloys in turning
proces. GA also utilized to optimize the variables in
turning process to minimize the cutting force. The
coupled cuckoo algorithm with ANN has shown better
performance than GA.

Arul et al. [15] developed predictive models to
predict surface finish, flank wear and force using ANN
and RSM in hard turning of Monel K500. The
domination of the machining inputs on the output
responses are studied using ANOVA. The ANN and
RSM predictive model correlated well. The optimum
levels of machining variables were found to obtain
optimum output responses.

Arul et al. [16, 17] have used particle swarm
optimization (PSO) coupled with RSM and desirability
analysis to optimize the machining variables in machining
aluminum alloy. The PSO’s performance desirability
analysis was compared. The PSO performed good in
optimizing the machining inputs. 

Maryam Abolfazli and Mohammad Hossein Paydar
[18] investigated AMZG composite refractory’s physical,
mechanical and chemical properties. Response surface
methodology was used to model and study the effects
percentage variation of the components on the properties.
The tool wear is complex one and it affects the
machining performances and reduces the accuracy of
the product. Thirumalai Ramanathan and Vivekraj M
[19] have conducted turning trails on Incone 718 using
ceramic cutting tool. They have reported that, the
accuracy and precision of the machined parts by ceramic
insert can be used for secured data transmission
systems in automation industries.

This study looked at the optimization of process
parameters for welding cupronickel alloys utilising a
CO2 laser welding technique. Using multi criteria decision
making (MCDM) approach and TOPSIS analysis, this
study aims to optimise the LBW process parameters of
cupronickel alloys. This inquiry seeks to uncover
improved process parameters, mechanical qualities, and
energy efficiency [21]. The goal of this study was to
improve the EDM machining settings on zirconium
dioxide (ZrO2) and aluminium oxide (Al2O3). The
machining properties related with the EDM process,
such as material removal rate (MRR) and surface
roughness (SR), were investigated utilising an L18
orthogonal array and the Taguchi technique [22].

From the literatures, it is revealed clearly that, the
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machining factors and corresponding progressive insert
wear influence on the machining characteristics of
alloys in turning process. Further, the development of
predictive model-based ANN and Taguchi are reported.
However, there was not seen adequate research.A
limited research reports were not reported a best
prediction model in case of dry turning of Monel
K500. 

Therefore, this work approaches ANN and regression
analysis to get the highly capable predictive model for
prognostic and optimization of wear. The regression
and prediction by ANN model are related with
experimental results to identify effective model.
Further, the impacts of factors on the responses are

studied using ANOVA.

Experimental

Monel K500 of diameter: 60 mm and length: 150 mm
was chosen to conduct experiments. The chemical
composition of Monel K500 (Wt%): Ni: 52.49, Si:
0.19, Mn: 0.46, Cr: 20, Mo: 6.29, Cu: 0.07, Fe: 1.0,
Co: 16.7, Ti: 1.94, Al: 0.47, Nb: 0.05, W: 0.16, V: 0.01,
C: 0.03, S: 0.002, Ta: 0.007. Whisker-reinforced
ceramic insert made by Sandvik were chosen for to
perform turning experiments on Monel K500 material.
Turning trials were done using NAGMATI175 lathe
with spindle speed range of 54-1200 rpm, feed range of
0.048-0.716 mm/rev, and of 1 HP motor power. A thin
layer of 0.7 mm was machined with a fresh cutting
edge to dispose the unwanted surface owing to
previous operation. Experimental trails were done out
in dry mode. The speed, feed and depth of cut are all
taken as inputs and flank wear and tool life are all
considered as attributes. The inputs and their levels are
shown in Table 1. L27 OA was used to perform
experiment. The results of the experiment are in Table
2. The relationship among input factors and output was
modeled by quadratic regression equation. The Equation
of polynomial regression equations can be used to
know the relation among the input factor and output
responses [20]. Insert wear was noted with help of tool
maker’s microscope. The worn insert was studied with
help of SEM images. The predictive model was
developed with help of Taguchi analysis and ANN
techniques. The experimental values were all verified
with predicted value. Input factors were also optimized
to get minimum of flank wear using desirability
approach and confirmation test was also conducted.

The 2nd order mathematical regression model in
general form is shown in equation (1) as below. 

(1)

where, 
‘Y’: Response: corresponding, 
 xi :Value of the ith machining variable,
 β : co-efficient: Regression 
: Measure: Residual.

Results and Discussion

The contribution impact of the machining inputs on
the flank wear and life of insert evaluated in turning of
Monel K500 alloy is discussed as follows:

Statistical analysis of experimental results
Analyses of ANOVA, regression analysis, and

confirmation tests were taken care for evaluation and
analyzing the impacts and contribution of factors on
flank wear while turning Monel K500.
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Table 1. Machining Parameters.

Machining 
Variables

Machining Parameters’ Levels

L: 1 L: 2 L: 3

V: m/min 40 50 60

S: mm/rev 0.07 0.110 0.15

ap: mm 0.30 0.60 0.80

Table 2. Experiment trail values for flank wear.

S.No
Experiment trail values

(V) (S) (ap) (VB)

1 40 0.07 0.30 0.20

2 40 0.07 0.60 0.27

3 40 0.07 0.80 0.26

4 40 0.110 0.30 0.29

5 40 0.110 0.60 0.29

6 40 0.110 0.80 0.29

7 40 0.15 0.30 0.32

8 40 0.15 0.60 0.33

9 40 0.15 0.80 0.34

10 50 0.07 0.30 0.20

11 50 0.07 0.60 0.22

12 50 0.07 0.80 0.24

13 50 0.110 0.30 0.19

14 50 0.110 0.60 0.22

15 50 0.110 0.80 0.24

16 50 0.15 0.30 0.22

17 50 0.15 0.60 0.25

18 50 0.15 0.80 0.33

19 70 0.07 0.30 0.34

20 70 0.07 0.60 0.33

21 70 0.07 0.80 0.32

22 70 0.110 0.30 0.31

23 70 0.110 0.60 0.35

24 70 0.110 0.80 0.37

25 70 0.15 0.30 0.35

26 70 0.15 0.60 0.37

27 70 0.15 0.80 0.38
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ANOVA results for Flank wear

The ANOVA is used to identify the impact of
individual factors. The P-value indicates the statistically
importance of individual factors. Every factor in the
ANOVA need to be calculated and if its p-value is
found to be lower than 0.05, then the particular factor
is said to be statically importance. The ANOVA table is
formulated with a dominance level of 5%. The %age of
contribution for every factor is shown in the last
column of ANOVA and the highest percentage indicates
significant influence of the factors on the response.

The ANOVA outcomes of flank wear are given in
Table 3. The p-value of the individual variables on
flank wear was identified as speed (0.00027), feed
(0.0004) and depth of cut (0.1481). With reference to
ANOVA outcomes and the p-value of the individual
variables on flank wear, the speed and feed rate are
noted to be dominant variable on insert wear and depth
of cut was not effectual on it. At significance level: 5%
and confidence level: 95%, the ANOVA analysis was
carried out. 

Regression analysis for flank wear

The relationship among input factors and output was
modeled by quadratic regression equation. The Equation
of polynomial regression equations can be used to
know the relation among the input factor and output
responses.

The experimental results were predicted using
regression analyses. Mathematical modeling was done
to predict the experimental results in turning Monel
K500 with help of quadratic equation for regression
analyses. The regression analysis has been applied and
quadratics equation was estimated. The predictive
quadratic equation using multi-linear model regression
of flank wear is designated in equation (2). 

VB = 0.728139  0.030940*V + 3.32717*S
+ 0.378922*ap0.030655*V*S0.001999*V*ap

+ 0.800439*S*ap + 0.000337*V2
 5.90278*S2

 0.285185ap2 (2)

Where VB shows the predictive quadratics equation
of flank wear. For VB, R2 value is 93% and this
predictive ability of the model was accepted and found
to be successful in predicting the flank wear. Fig. 1 was
obtained the distribution of cluster of points that
connects the normal plots for the residuals of flank
wear. These points, in fact close to the normal plot and
reasonable nearer to the plot which is acceptable with
95% confidence interval. The experimental results are
investigated to identify the optimum machining factors.
With help of the experimental results, the plot of
optimization is attained as shown in Fig. 2 using
desirability approach. The supreme factors to reduce
the wear whisker reinforced ceramic are 49 m/min,
0.07 mm/rev, 0.30 mm. 

Table 3. ANOVA Results for Flank wear.

S SOS DoF MS F: value P: value

Model 0.0766 9 0.0085 9.41 <0.0001

V 0.0111 1 0.0111 12.30 0.0027

S 0.0172 1 0.0172 19.05 0.0004

ap 0.0021 1 0.0021 2.30 0.1481

V*S 0.0042 1 0.0042 4.65 0.0456

V* ap 0.0007 1 0.0007 0.7832 0.3885

S* ap 0.0008 1 0.0008 0.8613 0.3664

V2 0.0263 1 0.0263 29.06 <0.0001

S2 0.0005 1 0.0005 0.5917 0.4523

ap
2 0.0017 1 0.0017 1.92 0.1841

Residual 0.0154 17 0.0009

Total 0.0920 26

R2 : 84%

Fig. 1. Normal plot: Residuals: flank wear.

Fig. 2. Histogram Optimization.
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Confirmation experiment for flank wear 

In order to verify the relations between experimental
and predicted results, confirmation test was carried out.
Table 4 shows confirmation test results. The experiment
was carried out for optimum factors and the obtained
experimental result is verified and compared with
predicted. Some of the experimental results were
verified with predicted results by regression model and
it is given in the Table 4. The results predicted by
optimum parameters and regression model have proved
that the predicted results are well matched with values
of experiment and the percentage errors also found to
be within allowable limits. The percentage error values

could be smaller than 20%. The comparison of results
of experiment and results of predicted by regression
model is shown in Fig. 3 and the percentage errors
were found to be within limit.

Flank wear
Fig. 4(a-b) illustrates the contour maps of flank wear.

These maps would be used for prediction the flank
wear at region of the experiment territory. It is
understood from maps that, the flank wear escalates
when the level of speed, feed and depth of cut
escalates. However, it is clearly shown in Fig. 4(a) that,
lower flank wear was seen at medium of speed’s level
and at low feed’s level.

Fig. 5 demonstrates 3D plot for wear as function of
speed, feed and depth of cut. The escalation in feed and
cutting speed remarkable causes the flank wear and it
is also recognized that, at middle speed’s level and low
feed’s, level lower flank wear is observed. Further, it is
seen from Fig. 5(a-c) that, the greater influence of ‘V’
vs ‘S’ and ‘ap’ vs ‘V’ on flank wear was observed than
the influence of ‘ap’ vs ‘S’. The optimum machining
conditions were found using desirability approach to
obtain minimum of flank wear. The impacts of
machining parameters on wear are investigated. In this
research paper, using ANOVA the impact of the

Table 4. Confirmation Test Results.

Validation of Optimum factors with 
experimental results

Validation of Regression Model with 
experimental results

Optimum 
Parameters

Exp., Pred., %age error
Machining Parameters 

(Randomly chosen) 
Exp., Pred., %age error

V=49
S=0.04
ap=0.30

0.19 0.195 2.56%
V=40
S=0.11
ap=0.80

0.29 0.31 6.45%

V=50
S=0.07
ap=0.30 

0.20 0.19 5%

Fig. 3. Variations among experimental and predicted results.

Fig. 4. (a-c) Flank Wear Contours.
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machining factors on wear is evaluated. To investigate
the impacts, Design expert is used. Further, the machining
factors were modeled using Taguchi technique and
neural intelligence technique. 

The interaction impact of machining parameter on
wear is given in the Fig. 6(a-b). From Fig. 6(a), the
wear is raised with rise in feed and speed. However,
minimum of flank is seen at middle speed’s level and
at lower level of feed. Further, it is seen in the Fig. 6(a)
that, the wear rises at low speed and high feed’s level
and it is understood that, the feed significantly dominate
on flank at lower condition of speed. However,
minimum of wear is observed at medium level of speed
and at lower level of feed for whisker reinforced
ceramic insert while turning the Monel K500. The
wear rises with rise in speed 50 m/min to 70 m/min.

The scanning electron microscope image of whisker
reinforce ceramics insert is seen in Fig. 7. Fig. 7 shows
the worn out insert at high speed’s level and feed and it
seems cutting edge get damaged severally. It would be
owing to the cause of high temperature and stress in
the machining zone during cutting operation. The

Fig. 5. (a-c) Surface Plots.

Fig. 6. (a-c) Interactions of Flank Wear.

Fig. 7. SEM Images of Flank Wear.
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escalation of temperature in the machining place as the
speed level escalates. Owing to damage of the cutting
edge at higher speed, the causing of temperature is
more. The induced temperature in the cutting edge
would weak the insert edge and plastic deformation is
happened to the edge. The wear mechanisms seen for
this insert are flank wear, crater wear and cutting edge
damage. These wear mechanisms are owing to more
friction temperature generation, compressive forces.

Life of the insert
The impact of machining variables on the insert life

is shown in Figs. 8-10. The impact of machining
factors like speed, feed and depth of cut on the tool life
indicates that the tool life lowered as the speed, feed
rate and depth of cut escalated. The insert wear
development with escalation in cutting time was
observed and analyzed. The machining of Monel K500
alloy at lower cutting speed, built edge was formed in
the machining zone. Further, the machining time
increases, the built-up edge breaks into microchips as

the temperature and wear rate of insert are increased in
the machine zone. Further, the fractured chips with
abrasion by particles of wear would initiate crater wear
on insert rake face [16-18].

The flank wear width formed into three stages such
as initial rapid wear, uniform wear rate and with
respect to varying with cutting time period. It was
noticed that, the flank wear is owing to friction in
between the carbide particles in Monel K500 and
tungsten carbide insert. After the 1st stage of the wear
portion, the flank wear of the insert at low speed’s level
and feed is found to be stable. 

The development of insert wear was notified with
increasing time at high speed’s level at varying range
of feeds and depth of cuts. It was noticed that at high
speeds, the beginning wear is abrasive. At high speeds,
no built edge is formed owing insufficient time to
occur welding and diffusion wear was found and it
causes the cutting edge to be weakened and as result,
the cutting temperature in machining zone and cutting
forces are increased. As the temperature increased at
increasing machining time would soften the cutting
edge and at last it gets failed. 

Modeling of the parameters using Neural
Intelligence

Neural intelligence is an ANN technique and it takes
minimum of computation time. The experimental data

Fig. 8. Impact of speed at different feed on tool life.

Fig. 9. Impact of feed at different depth of cut on tool life.

Fig. 10. Impact of speed at various depth of cut on life of the tool.

Table 5. Experiments and results: Testing of the network.

S.
No

Exp. 
No
Test

Target: 
flank wear 

(mm)

Output by Neuro 
Intelligence: 

flank wear (mm)
AE ARE

1 TST 0.2 0.22 0.20549 10.274469

14 TST 0.22 0.22 0.008051 3.659510

16 TST 0.22 0.20 0.018545 8.429461

26 TST 0.37 0.36 0.008125 2.195986
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are subdivided into training, testing and validating data.
The weights are modified in between neurons to get the
desired error level. Training is done by bestowing a
sequential of training data. Further, the weights are
changed chording to the algorithm which is used for

learning. The machining factors conditions and results
to train test and validate the network is shown in Table
5, 6 and 7. 

There are 4 datasets for testing and validating the
data and 19 datasets are used to train the network. In
order to train the network, the quick back propagation
with the approximation Levenberg-Marquardt was
utilized in this model. Neuro intelligence tool was used
to carry out ANN model. The ANN structure 9-4-1 was
found to be best to predict the flank wear and it is
shown in Fig. 11. The input layer corresponds to

Table 6. Experiment and results: Validation of network.

S.
No

Exp.
No

VLD

Target: 
flank wear 

(mm)

Output by Neuro 
Intelligence: 

flank wear (mm)
AE ARE

7 VLD 0.32 0.33 0.012495 3.904699

11 VLD 0.22 0.20 0.018929 8.603958

19 VLD 0.34 0.28 0.054511 16.03253

27 VLD 0.38 0.36 0.012807 3.370342

Table 7. Experimental and results: Training of the network.

S.
No

Exp.
No

VLD

Target: 
flank wear 

(mm)

Output by Neuro 
Intelligence: 

flank wear (mm)
AE ARE

2 TRN 0.27 0.27 0.000125 0.046481

3 TRN 0.26 0.25 0.000069 0.026369

4 TRN 0.29 0.28 0.000252 0.087062

5 TRN 0.29 0.28 0.000156 0.053774

6 TRN 0.29 0.28 0.000005 0.001838

8 TRN 0.33 0.32 0.000101 0.030534

9 TRN 0.34 0.33 0.000235 0.069103

10 TRN 0.2 0.19 0.000863 0.431604

12 TRN 0.24 0.24 0.000064 0.026707

13 TRN 0.19 0.19 0.002787 1.467055

15 TRN 0.24 0.23 0.00012 0.050177

17 TRN 0.25 0.25 0.000057 0.022854

18 TRN 0.33 0.33 0.000027 0.008132

20 TRN 0.33 0.33 0.000009 0.002698

21 TRN 0.32 0.32 0.000262 0.081782

22 TRN 0.31 0.30 0.000114 0.036735

23 TRN 0.35 0.35 0.000202 0.057573

24 TRN 0.37 0.36 0.002901 0.784049

25 TRN 0.35 0.34 0.000002 0.000684

Fig. 11. ANN Structure.

Table 8. Architecture Details.

S.No Details

1 Architecture 9-4-1

2 Number of: repetitions 5000

3
Error: Absolute Training 0.044917: training

0.064496: validation

Network error 0.074675: training
0: validation

4 Speed of training .ite/sec 2504.99

5 Algorithm: Training Quick propagation

6 rate of learning 0.48

7 momentum 0.23

Table 9. Summary of Testing, Training and Validation details.

For all testing, training and validation

Details for Testing

Target Output AE ARE

Mean 0.28963 0.286922 0.006013 0.022132

Std.Dev 0.05738 0.055931 0.011527 0.039593

Min 0.19 0.192787 0.000002 0.000007

Max 0.38 0.367193 0.054511 0.160325

Correlation 0.975133

R-squared 0.945963

Details for Training

Target Output AE ARE

Mean 0.292105 0.292038 0.00044 0.001729

Std.Dev 0.050323 0.049883 0.000845 0.003568

Min 0.19 0.192787 0.000002 0.000007

Max 0.37 0.367099 0.002901 0.014671

Correlation 0.999859

R-squared 0.999635

Details for Validation

Target Output AE ARE

Mean 0.315 0.296562 0.024685 0.079779

Std.Dev 0.058949 0.062292 0.01741 0.050767

Min 0.22 0.201071 0.012495 0.033703

Max 0.38 0.367193 0054511 0.160325

Correlation 0.923566

R-squared 0.764843
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variables such as speed, feed rate and depth of cut.
Neurons of hidden layer are connected to the output
flank wear. The details of the architecture are shown in
the Table 8. 

Turning variables such as cutting speed, feed rate and
depth of cut were taken as inputs, with the output being
flank wear. Supreme neural network architecture was
designed based on AE (average error), correlation
factor and R-Squared value. The summary of testing,
training and validating details are shown in the Table 9.
The best values of the momentum and rate of learning
is arrived with help of optimization tool box. 

The error distribution and weight distribution obtained
in this ANN model is shown in Fig. 12a and 12b
Typical output of ANN model shows the comparison of
the target and out and it is shown in Fig. 13. The
percentage error among target and output is within
permissible error percentage. To validate the ANN

model, four trails were chosen and validated. From the
Fig. 12a&b, it is very well understood that, found out
ANN model can effectively be used to predict flank
wear.

Conclusion

In this paper, an experiment work and computing
analysis for dry turning of Monel K500 has been
discussed. The flank wear results against various levels
of machining variables were evaluated by doing dry
turning experiments. Further, dry turning machining
operation was modeled and flank wear is predicted
with help of ANN and regression analysis. In addition,
Desirability function approach was incorporated to
identify the optimum factors in dry turning process.
The main conclusions are listed as below:
 The statistical models developed by regression

Fig. 12. a&b. Typical output of Error & Weight distribution in ANN model.

Fig. 13. Comparison of Target and ANN model output.
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analysis and ANN-Neuro Intelligence were found
to be in well accord with experimental values with
permissible error percentage. These statistical
models would represent as vital for aero parts
manufacturers industries. 

 The prediction capacity of ANN techniques was
noted to be more accurate when compared to the
prediction done by regression model.

 A high R-Squared (94.56%: Testing, 99.99%:
Training, 76.48%: validating) of ANN model
presents a strong correlation among model prediction
and experiments values. Therefore, the machining
learning tools can be analyzed and it can be
modeled the turning process effectively. it can
become a best substitute to time consuming and
costlier experiments.

 Supreme factors evaluated using desirability approach
to better flank wear. An improvement of 50% in
flank wear value was identified after optimization. 

 ANOVA inspected the impact of input factors and
demonstrated that among all the factors feed rate
has a significant impact on flank wear by V2, ‘V’
vs ‘S’ and ap.

 Flank wear reduces at medium speed’s level and
lower feed’s level and depth of cut in turning
Monel K500 using whisker reinforced ceramic
insert.

 The effect of interactions of the machining
variables on flank wear were studied and verified
using the three-dimensional surface plot.

 The future scope of this research can be continued
to assess the machining performances in turning
Monel K500 under dry and Nano MQL environment
using different ceramic material inserts to find out
best ceramic insert for better machining performances.
It would be benefited for aero industries.
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