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Chatter during machining operations is extremely detrimental to cutting tool life and the surface quality of the workpiece.
Online monitoring methods are becoming more relevant for chatter detection and prediction in automated machining
operations. While the utilization of vibration signals for the direct detection of chatter has been extensively researched, there
are limited studies that explore the use of certain other sensor signatures, such as force signals. The present work aims to
expand on the area of chatter detection in the turning of difficult-to-machine materials through Machine Learning (ML) using
force signals acquired through multi-component tool dynamometer. An experimental setup has been established to collect force
signature during dry turning operation under various process parameters selected on the basis of analytical Stability Lobe
Diagrams (SLDs). Statistical features of Standard Deviation (SD) & Moving Window Standard Deviation (MWSD) extracted
from the time-domain force signatures for different machining conditions are used to build statistical models using the Decision
Tree (DT) Algorithm. The feasibility and performance of classifier models using the feature of MWSD are studied in the
present paper. The DT classifier trained using MWSD of window size 100 has been found to provide a classification accuracy
of 97.511%.
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Introduction

Over the years, machining vibration, or chatter, has

been a target of zealous research, studied extensively

due to the significant impact it has on the outcome of a

wide range of machining processes. “Chatter” is used

to describe a type of cutting vibration attributed to the

characteristics of the processing system, under the

continuous action of an aperiodic external exciting

force. Despite having been researched for over a century,

chatter remains a major impediment to the improvement

of productivity, dimensional accuracy, material removal

rate (MRR) & surface quality in machining processes

such as milling, drilling, turning, etc. This is mainly due

to cutting chatter being a complex non-linear phenomenon.

Stability Lobe Diagrams (SLDs) based on regenerative

chatter theory offer selection of chatter-free process

parameters that accommodate the complex nature of

chatter. In severe cases, chatter has been known to cause

fast tool wear, worsen the workpiece quality, shorten

the machine’s useful life, affect the reliability and reduce

production efficiency [1,2].

Altintas [3] conducted extensive studies on a unified

mathematical model to predict chatter stability in

machining operations like boring, turning, drilling, and

milling. It boasts universal application, even though the

accuracy of the force predictions by analytical models

are limited when it comes to oblique cutting operations

as orthogonal cutting parameters are used to establish

the cutting constants. Tang et al. [4] studied the mechanical

properties and machinability of Al2O3 based ceramics

that are used in dental implants, showing that the cutting

force decreased with increasing cutting speed or decreasing

depth of cut. The effects of machining parameters such

as machining force on the characteristics of MRR and

tool wear during the machining of Al2O3 ceramics have

also been explored by Lee and Kim [5]. Experimental

investigation on palm kernel fiber-reinforced epoxy-

based composite carried out by Senthil et al. [6] explored

the effects of machining parameters such as spindle

speed, depth of cut & feed on the characteristics such

as surface roughness, machining force, tool life, etc. Anuj

Kumar et al. [7] employed analytical SLDs developed by

considering the dynamics of a single degree of freedom

(SDoF) orthogonal turning process in combination with

tool wear equations to study the effects of chatter on

tool wear. Recently, N. Subhash et al. [8] investigated

the machinability and machining stability of super duplex

stainless steel (SDSS) during dry turning process through

the mechanistic approach. They established the limits

for stable cutting conditions by generating SLDs using

experimentally determined cutting force coefficients.

The validity of the predicted analytical stability limits

was supported by the experimental results. From their

findings, the cutting forces and the cutting coefficients

were determined to be relatively independent of the

speed. Recent research on chatter focuses on the appli-
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cations of advanced Machine Learning (ML), Artificial

Intelligence (AI), and Deep Learning (DL), as these

approaches are highly effective at solving problems of

high complexity and nonlinearity, by employing large

amounts of data [1, 2, 9]. Mohanraj et al. [10] reviewed

the numerous indirect tool condition monitoring

techniques, feature extraction techniques, and machine

learning algorithms for monitoring the tool condition

utilized in milling process. The application of different

types of AI techniques in machining operations such as

parameter optimization, chatter stability, predictive

modelling, process control, tool wear, etc., have been

explored in detail by Chuo et al. [11]. Generally, in

such data-driven methods, the signals of cutting force,

cutting vibration, sound, and current are collected into

a sample set of labeled cutting big data to train the

model. The cutting chatter is then directly predicted

using the model trained to identify the relation between

the input and output parameters [1, 2, 10-12]. The

processing technology for automatic detection in

unmanned machining was developed by Tlusty and

Andrew [13], who used dimensional & proximity

sensors, cutting force, spindle force & feed force sensors,

spindle motor torque & power sensors, and acoustic

emission (AE) sensors to measure process parameters

such as cutting force, vibration, soundwave, etc. Further

experimental analysis showed that cutting force sensors

worked best at clearly distinguishing chatter. Kuljanic

et al.[14] studied the data fusion of various sensors and

concluded that cutting force signatures and vibration

signatures were the most suitable for chatter recognition.

A simple DT-based ML classifier was used by Arun et

al. [15] to develop a model to predict the grinding

wheel conditions in a surface grinding process using

the AE signature in the time-domain. A similar work

that used a classification and regression tree (CART)

classifier for the prediction of grinding wheel condition

was also carried out by Mouli and Rameshkumar [16]

using AE signatures. Artificial Neural Networks (ANNs)

have been successfully employed for the prediction of

tool wear using cutting force and surface roughness by

Thangarasu et al. [17] for the turning of EN8 steel. Baig

et al. [18] developed an ANN model using vibration

signals for tool wear prediction during the turning of

EN9 and EN24 steels. Saravanamurugan et al. [19]

studied an ML technique for the active prediction of

chatter in boring process. They used accelerometers to

acquire vibration signals during boring considering the

parameters of feed rate, spindle speed & depth of cut,

as well as the dynamics of the tool and workpiece.

Support vector machine (SVM) classifier was used to

classify the extracted features into stable, transition &

chatter patterns and validated using surface roughness

values. Krishnakumar et al. [20] explored the application

of ML classifiers for the feature-level fusion of AE &

vibration signals to monitor tool conditions. They used

different classifiers such as C4.5 DT, SVM, Naive Bayes,

and ANN. Their findings show that the classification

accuracies of the algorithms were improved through

feature-level fusion. Feature level fusion was found to

be more effective in the time-domain. Recently, the appli-

cation of process model guided ML for the categorization

& prediction of machining stability using vibration data

has been explored by Ko [21], who trained the SVM

and gradient boosting models using feature sets of

amplitude and frequency distribution.

The detection of chatter is vital in present-day scenarios,

especially during the machining of difficult-to-machine

materials, which are often prone to chatter vibrations.

Researchers have studied the machinability and machining

stability of EN24 steels, with many studies aiming to

optimize the machining process parameters to attain

stable machining [22-25]. Due to its high strength and

hardness, the machining of EN24 often involves the

generation of high cutting forces, making it susceptible

to unstable process-induced chatter vibrations. Moreover,

the excessive tool wear and poor surface finish charac-

teristic have also caused them to be labeled as difficult-

to-machine materials. There are also many other recent

literatures that explore the various aspects of condition

monitoring of machines and machine tools [26-28] as

well as different parametric optimization techniques

[29-31] for the improvement of their corresponding

manufacturing processes, which serve to emphasise the

relevance of the current work. In the present paper, a

DT model is proposed to predict process conditions

using statistical features extracted from the time-domain

force signatures. The feasibility and performance of

classifier models using the feature of Moving Window

Standard Deviation (MWSD) is studied in the present

paper.

Methodology

Theoretical SLDs are established for the dry orthogonal

turning of the cylindrical EN24 workpiece on a

mechanical lathe. An experimental setup is established

for the dry orthogonal turning process of EN24. Process

parameters are selected on the basis of the theoretical

SLDs, which are plots of spindle speed versus depth of

cut, for the different chatter conditions. The experiments

are conducted on a mechanical lathe and the force

signatures are collected using a calibrated dynamometer

and data acquisition (DAQ) software. Features of

Standard Deviation (SD) & MWSD for different

window sizes (5, 10, 50 & 100) are extracted in the

time domain for the signals and used for the training of

the DT classifier. ML models are trained using the

features extracted from the cutting force signals and

compared using various performance measures. This

experimental methodology is illustrated in Fig. 1.

Development of Theoretical SLDs
A SDoF vibratory model of orthogonal turning
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process is given in Fig. 2. The model is assumed to be

under viscous damping and only cutting forces of the

sharp tool are considered. The vibration is assumed

only in the y-direction.

Altintas [3] has previously modeled an SDoF system

for orthogonal turning operation and arrived at the

following expression for chatter-free machining,

blim = 

In this equation, blim is the limiting depth of cut

above which chatter occurs, kt is the coefficient of feed

force component and G(ωc) is the real parts of the

transfer function. The chatter-free stability behavior of

the process can be predicted by using equations given

in conjunction with the measured dynamics and force

coefficients.

The SLD can be used to predict the stability of

chatter in a turning process. A MATLAB program is

used to obtain the SLD from the process parameters

and force coefficients analytically. The theoretical SLDs

for the given workpiece with stick-out length of 100

mm are determined using the previously established

relations and plotted using the MATLAB program. The

limiting depth of cut values for different levels of

spindle speeds can be obtained from the SLD as in Fig.

3. From the SLDs, the limiting depth of cut values for

spindle speeds of 400, 1000 & 1600 rpm were found to

be 0.5651, 0.5654, 0.5655 mm respectively.

DT Algorithm
DT is a type of supervised machine learning

technique widely used in regression or classification

models. These models are visualized as a tree structure

containing decision nodes, that contain multiple branches

and leaf nodes that represent the outcome of those

decisions without any further branching. The topmost

decision node is known as the root node, which is the

representation of the whole dataset, which is further

split into multiple homogeneous sets with each upcoming

decision node. The model infers and learns decision

rules from the training data in order to predict the value

of target variables. The CART algorithm is used to

construct the DT, by following a set of if-else conditions

in order to classify the given data. The DT may split

and distribute the dataset using the gini diversity index

criterion, the twoing rule criterion, or the maximum

deviance reduction criterion.

Experimental Setup
The experimental set-up is established to conduct the

experiments as in Fig. 4. The carbide turning tool insert

used is PC9030 Grade KORLOY WNMG080408-HA

1

2ktG c 
---------------------–

Fig. 1. Experimental methodology.

Fig. 2. Modeling of orthogonal turning process.

Fig. 3. Theoretical SLD obtained from MATLAB.
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affixed on a right hand WIDAX tool holder, MWLNR

2525 M08. The high-quality carbide turning tool insert

boasts a hardness of HRA92.6 with good wear and

breakage resistance, and is used for both internal &

external turning applications. The workpieces used are

150 mm long cylindrical EN24 rods of 30 mm diameter.

The workpiece material is through-hardened high-

strength alloy steel. Kistler Type 9257B dynamometer

is used for cutting force measurements. It consists of 4

three-component force sensors sandwiched between a

top plate and a base plate. The force measured is broken

down into three components. The amplifier Kistler

LabAmp Type 5167A is used alongside the dynamometer

to digitize and process the signals from the piezoelectric

sensors. The collection of the dynamometer force data

is done on a laptop computer connected to the Kistler

LabAmp through the DynoWare data acquisition

software. The software is set up as per manufacturer re-

commendations and experimental parameter require-

ments. A sample rate of 1000 Hz was selected for a

measuring time of 20 seconds. The Centre Lathe Turn

Master 40 capable of running at eight different spindle

speeds ranging from 71 to 1600 rpm is used. 

The experiments are conducted under dry cutting

conditions on the mechanical lathe. The setup consists

of a cylindrical EN24 workpiece mounted into the chuck

of the spindle of the lathe. The workpiece overhang is

set to 100 mm. Cutting forces are measured using a

calibrated multicomponent dynamometer. DynoWare

data acquisition software is used to process and collect

the force signals through the Charge Amplifier and

Data Acquisition Device. The turning process is con-

ducted on the workpiece with varying levels of speed,

feed, and depth of cut selected from the theoretically

Fig. 4. Experimental setup; Lathe-workpiece-dynamometer-tool setup.

Table 1. Turning Process Parameters

Condition
Feed 

(mm/rev)
Speed
 (rpm)

Depth of Cut 
(mm)

1 0.1 400 0.2

2 0.1 1000 0.2

3 0.1 1600 0.2

4 0.1 400 0.5

5 0.1 1000 0.5

6 0.1 1600 0.5

7 0.1 400 0.7

8 0.1 1000 0.7

9 0.1 1600 0.7

10 0.1 400 1

11 0.1 1000 1

12 0.1 1600 1
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established SLDs. The selected process parameters are

given in Table 1.

Results & Discussions

The dynamometer force signal data recorded in the

DynoWare software for the 12 turning experiments

conducted are shown in Figs. 5(a) and (b). The terms

Fx, Fy, and Fz represent the force signals pertaining to

radial force, feed force, and cutting force respectively.

The cutting force signals were found to have the greatest

amplitude, which coincided with what is expected from

the literature.

Digital images of the workpiece surfaces were captured

using a 32-megapixel digital camera. The captured

surface topographies of the workpieces pertaining to

each of the 12 experimental conditions are depicted in

Fig. 6. The conditions of unstable cutting were distin-

guishable from the presence of chatter marks. These

chatter marks are indicators of poor surface finish and

reduced dimensional accuracy.

Chatter Identification using CART DT Classifier
Feature Extraction

Numerous features can be extracted in the time

domain from the cutting force data obtained through

the DAQ software. These features are used as datasets

for training the classification algorithms. Not all features

can provide an accurate depiction of the process

condition when used for training models. Unilaterally

increasing the number of features used for training the

model will not always provide any substantial im-

provement to the classifier. In order to decrease the

computation time and resource usage, the best features

that can effectively depict the process condition are

selected for use as datasets for training the ML Models.

SD is a statistical feature that has shown good results

when used in DT classifiers. 

Fig. 5. (a). Force signature data from Dyno Ware software; Condition 3: Spindle Speed 1600 rpm, Depth of Cut 0.2 mm and (b) Force
signature data from Dyno Ware software; Condition 9: Spindle Speed 1600 rpm, Depth of Cut 0.7 mm.
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The time-domain force signals obtained from DAQ

software were analyzed sequentially over time and the

features of SD & MWSD for different window sizes

(5, 10, 50, & 100) were extracted from the Fx, Fy & Fz

signals for each process condition (12 classes). The SD

& MWSD values for conditions 3, & 9 are plotted for

comparison in Figs. 7 and 8.

From the evaluation of the data given in Figs. 8(a)

and (b), the effects of the window size on MWSD were

inferred. Increasing the window size helped in decreasing

the noise and resulted in less variation in the MWSD.

Moreover, this also led to the response of each of the

force signature components becoming more distinct.

But raising the window size above a certain limit is not

advised as it could result in the loss of resolution. 

CART DT Classifier

The MWSD features extracted from the 3 cutting

force component signatures (radial force, feed force &

cutting force) pertaining to the 12 classes were taken as

datasets to train the CART DT classifiers. For conveni-

ence, the models trained using the dataset formed from

the MWSD feature of window sizes 5, 10, 50 & 100

were named MW-05, MW-10, MW-50 & MW-100

respectively. The normal SD feature dataset was used

to train a separate CART DT model for comparison.

The DT was constructed using the MATLAB DT toolbox.

The optimizable DT algorithm was used where the

optimized hyper-parameters were selected iteratively to

arrive at the optimum model with the highest classification

accuracy. 10-fold cross-validation, which evaluates a

complementary subset of the data among the available

input data, was used to validate the model. The

performance of the trained models was compared with

the help of performance measures, viz., classification

accuracy, precision, recall, kappa statistics & ROC

measure.

The evaluation of the overall classification accuracy

& Kappa statistics value (refer to Fig. 9), shows that

the model ‘MW-100’, which was trained using the

dataset of MWSD with a window size of 100, displayed

the best performance out of all the models. The

evaluation of the performance & robustness of the

models using the confusion matrices with regards to

True Positive Rates (TPR), False Negative Rates (FNR),

Positive Predictive Values (PPV), & False Discovery

Rates (FDR) further strengthening the validity of these

findings. TPR, otherwise referred to as Recall or

Fig. 7. Time-domain Standard Deviation Plots for conditions 3 & 9.

Fig. 6. Digital Imagery; Surface topography of the finished workpieces.
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Sensitivity is a measure of ‘completeness’ of the classifier,

and PPV or Precision is the measure of ‘exactness’ of

the classifier. The models trained with MWSD datasets

of larger window sizes displayed higher TPR & PPV

values and lower FNR & FDR values. Thus the

classification using these models can be considered to

be more comprehensive & precise. The measure of the

‘Area Under Curve (AUC)’ number from the receiver

operating characteristic (ROC) curve that plots the true

& false positive rates also supports this claim. The

models trained with MWSD datasets of larger window

sizes displayed higher and more consistent AUC values.

Fig. 8. (a) Time-domain MWSD Plots for Condition 3 and (b) Time-domain MWSD Plots for Condition 9.

Fig. 9. Comparison of Models; Overall Classification Accuracy &
Kappa Statistics.
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The performance of the model experienced an

improvement with the increase in the window size used

for the MWSD. Compared to models using normal SD

feature datasets, those trained using MWSD feature

datasets generally provide better classification accuracy

for larger window sizes. The model trained using the

dataset with MWSD of window size 100 is found to

have the best performance out of the models explored,

with a classification accuracy of 97.511%. The model

displays very high TPR & PPV and very low FDR &

FNR values when compared to the other models. It

also has the highest Kappa value of 0.972. The ROC

plots also display very high AUC values of 0.99 & 1.

Overall, the model has a sufficiently high performance

when compared with the other models and the classi-

fication accuracy of the model can be improved by

increasing the MWSD window size to an optimum value.

Conclusion

Force sensor signatures were captured from a total of

12 experimental conditions with different combinations

of spindle speed and depth of cut, during the turning

operation on EN24. Signal processing was carried out

and statistical features of SD & MWSD with different

window sizes were extracted from the time domain

signatures of force signal. The models trained using the

dataset formed from MWSD feature of window sizes 5,

10, 50 & 100 were found to display classification accuracy

of 61.5%, 69.8%, 92.7% & 97.5% respectively. 

The analysis of other performance measures such as

Recall, Precision, Kappa value, and ROC AUC measures

suggest that the models trained using the dataset

formed from MWSD provide good performance at

larger window sizes. It can be inferred that the feature

of MWSD is very effective in training CART DT

classifier models for chatter identification. The selection

of an optimum window size can aid in reducing the

misclassification rates and increasing the robustness of

the classifier. Future studies may include the method of

selection of an optimum window size that serves to

maximize the classification accuracy and reduce

classification errors.
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