Ceramic Processing Research

Microwave sintering and mechanical properties of La₂O₃/Nb₂O₅ toughened Al₂O₃ ceramics

Jin Liu, Bingliang Liang*, Yunlong Ai, Jianjun Zhang, Fei He, Wen He and Zhiyong Liu

School of Materials Science and Engineering, Nanchang Hangkong University, No.696, South Fenghe Avenue, Nanchang 330063, Jiangxi Province, P.R. China

To improve the toughness of Al₂O₃ ceramic, $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ (x = 2.5-15.0 vol.%) composite ceramics were synthesized via microwave-sintering. The influences of sintering temperature (T_s) and La₂O₃ content on phase composition and mechanical property of $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ composite ceramics were studied. It is shown in the results that the T_s of La₂O₃/Nb₂O₅ doped Al₂O₃ ceramic was 150 °C lower than that of Al₂O₃ ceramic. With the increase of x, La_{0.33}NbO₃, LaNbO₄ and LaAl₁₁O₁₈ were formed successively. LaNbO₄, columnar-Al₂O₃ grains and LaAl₁₁O₁₈ with plate-like shape were generated in-situ during the sintering period. Compared to Al₂O₃ ceramic, the fracture toughness of $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ ceramics were at least 70% higher when $5.0 \le x \le 12.5$. 7.5La₂O₃/10Nb₂O₅-82.5Al₂O₃ ceramic exhibited superior mechanical property: Hv = 12.0 GPa, $K_{IC} = 6.2$ MPa·m^{1/2} (1,500 °C, 30 min).

Keywords: Al₂O₃ ceramics; Microwave sintering; Phase formation; Mechanical properties

Introduction

Alumina (Al_2O_3) ceramic ranks among the most important engineering ceramics due to high hardness, high mechanical strength, high temperature insulation resistance, excellent thermal conductivity [1]. However, its potential application in engine is limited by high fragility (K_{IC} -3.0 MPa·m^{1/2}) [2]. Some additives or second phases such as AlCr₂ [3], WC [4], TiC [5, 6], SiC [7, 8], ZrO₂ [9, 10], Nb₂O₅ [11, 12], La₂O₃ [13], LaAl₁₁O₁₈ [14], LaNbO₄ [15] were doped into the Al₂O₃ matrix to improve mechanical properties. In Al₂O₃-Nb₂O₅ [12] system, some equiaxed Al₂O₃ grains were induced to grow oriented into columnar grains. As to $Al_2O_3-La_2O_3$ [13] and $Al_2O_3-LaAl_{11}O_{18}$ [14] systems, the plate-like LaAl₁₁O₁₈ grains significantly improved the fracture toughness of Al₂O₃. Furthermore, the fracture toughness and bending strength of Al₂O₃ was improved by the domain conversion of LaNbO₄ [15, 16].

Generally, ceramics can be sintered by conventional, plasma and microwave heating methods [17-19]. Microwave sintering, as an efficient sintering method, leads to the volume heating of the sample through the coupling between microwave radiation and the material [20, 21]. Therefore, the temperature gradients resulted from conventional sintering process is prevented [22, 23]. In this experiment, in order to form LaNbO₄ and plate like LaAl₁₁O₁₈ grains in-situ and improve the mechanical property, Al₂O₃ were doped with La₂O₃/ Nb₂O₅ (xLa₂O₃/10Nb₂O₅-(90–x)Al₂O₃, x = 2.5-15.0 vol.%) and synthesized via microwave-sintering.

Experimental Procedure

 $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ (x = 2.5-15.0 vol.%) composite ceramics were synthesized via microwavesintering. High purity La₂O₃ (99.99 wt.%), Nb₂O₅ (99.99 wt.%) and Al₂O₃ (99.6 wt.%) were weighed according to the volume ratio of $xLa_2O_3/10Nb_2O_5-(90-x)$ Al₂O₃ and then ball milled for 12 h. After dried, the mixed powders were granulated with 5 wt.% polyvinyl alcohol solution (PVA, 10 wt.%) as binder. Then granulated mixtures were pressed into regular bars by uniaxial (100 MPa) and cold-isostatic pressing (200 MPa) successively. These regular bars were placed in a conventional furnace and calcined at 600 °C for 3 h to remove binder. The sintering temperature of the samples in the microwave sintering furnace was 1,450~1,500 °C and the holding time was 30 min.

All sintered specimens were polished before the test. Their densities were evaluated by the Archimedes method. The phase analysis was carried out by X-ray diffractometry (XRD, D8ADVANCE Diffractometer, Bruker-AXS). The observation of microstructure were performed on thermal etched specimens by scanning electron microscopy (SEM, Nova Nano SEM450, FEI). The elemental analysis was conducted using energy dispersed spectroscopy (EDS). Vickers hardness (Hv) and fracture toughness (K_{IC}) was tested by HVS-1000

^{*}Corresponding author:

Tel : +86 791 8386 3034

Fax: +86 791 8645 3203

E-mail: lbl@nchu.edu.cn

Vickers tester and single edge precracked beam method (SEPB), respectively.

Results and Discussion

The relative density (h) of $xLa_2O_3/10Nb_2O_5-(90-x)$ Al_2O_3 specimens is shown in Fig. 1. The *h* of specimens sintered at 1.450 °C increased firstly from 93.6% (x =2.5) to 98.0% (x = 7.5) and then decreased to 93.4% (x = 15.0). Meanwhile, the h of specimens sintered at 1,500 °C exhibited slightly higher relative density with the same variation trend and reached the maximum of 98.8% for x = 7.5. It indicated that the sintering temperatures of $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ were 150~ 200 °C lower than that of Al₂O₃ ceramic (1,650 °C) [23]. The improvement of sinterability could be attributed to two reasons. On one hand, the doping of La₂O₃ and Nb₂O₅ might result in the formation of liquid phase during the sintering period. On the other hand, the volumetric heating enables microwave sintering to allow for more rapid and uniform heating than conventional sintering, leading to noticeable decreases in sintering temperature and time [24, 25].

The XRD patterns of the $xLa_2O_3/10Nb_2O_5-(90-x)$ Al₂O₃ ceramics are shown in Fig. 2. When x = 2.5, α -Al₂O₃ (ICDD: 46-1212) and La_{0.33}NbO₃ (ICDD: 53-1023) were detected. With the increase of the content of La₂O₃, LaNbO₄ (ICDD: 22-1125) and LaAl₁₁O₁₈ were formed successively. No diffraction peaks corresponding with La₂O₃ and Nb₂O₅ were observed. It indicated that La_{0.33}NbO₃, LaNbO₄ and LaAl₁₁O₁₈ were generated successively in the process of sintering when the mole ratio of La₂O₃ to Nb₂O₅ increased from 0.30:1 (x = 2.5) to 1.78:1 (x = 15.0). The phase compositions of $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ ceramics according to XRD analysis were listed in Table 1, which is similar to previous work from our group [26].

At the same time, when x exceeded 7.5, the intensities

Fig. 1. Relative density (*h*) of $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ ceramics.

of diffraction peaks falling within LaAl₁₁O₁₈ increased, i.e., the content of LaAl₁₁O₁₈ ascended with the increasing La₂O₃ content. Of course, since La₂O₃ reacts with Al₂O₃, the content of Al₂O₃ is continuously decreasing. When x = 15.0, the main phase transformed from Al₂O₃ to LaAl₁₁O₁₈.

Fig. 3 is a presentation of the SEM images of $xLa_2O_3/$ $10Nb_2O_5$ -(90-x)Al_2O_3 ceramics. All the specimens exhibited a very small number of pores because the high heating rate in microwave sintering is favorable to boundary diffusion and in turn grain growth [27, 28]. When x = 2.5, the specimen was consisted of equiaxed grains and fewer grain boundary phase, which were determined to be Al₂O₃ and La_{0.33}NbO₃, respectively, by the EDS analysis (as shown in Fig. 3(a)). LaNbO₄ grains were observed as x exceeded 2.5(as shown in Fig. 3(b)) and the amount of which increased with increasing x. Meanwhile, the Al₂O₃ grains for x > 2.5were smaller than that for x = 2.5 and homogeneously distributed with LaNbO₄. As to x = 15.0, a large quantity of plate-like grains identified as LaAl11O18 were formed (as shown in Fig. 3(f)), indicating that there were LaNbO4 and plate-like LaAl11O18 obtained in-situ during the sintering process. This phenomenon resembles what was previously reported by Brito et al. [14] and Zhang et al. [15]. As Fig. 2 demonstrates, the SEM and EDS analysis exhibited the results consistent with those of XRD analysis above.

Fig. 2. XRD patterns of xLa₂O₃/10Nb₂O₅-(90-x)Al₂O₃ ceramics.

Table 1. Phase composition of $xLa_2O_3/10Nb_2O_5$ -(90–x)Al₂O₃ ceramics.

x	Al ₂ O ₃ ICDD: 46-121	La _{0.33} NbO ₃ 2ICDD: 53-1023	LaNbO ₄ ICDD: 22-1125	LaAl ₁₁ O ₁₈ 5 ICDD: 33-0699
2.5	\checkmark			
5.0	\checkmark		\checkmark	
7.5	\checkmark		\checkmark	
10.0			\checkmark	\checkmark
12.5	\checkmark		\checkmark	\checkmark
15.0	\checkmark		\checkmark	\checkmark

Fig. 3. SEM images of $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ ceramics sintered at 1,500 °C for 30 min: (a)~(f), x = 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, respectively.

The Vickers hardness (*Hv*) of $5Nb_2O_5/xLa_2O_3$ -(95–*x*) Al₂O₃ composite ceramics was summarized in Fig. 4. As $2.5 \le x \le 15.0$, *Hv* of the specimens sintered at 1,500 °C was higher, to some extent, than *Hv* of which sintered at 1,450 °C. With the increase of *x* value, *Hv* increased firstly ($2.5 \le x \le 7.5$) and then decreased gradually ($7.5 \le x \le 15.0$), and it reached the maximum value for *x* = 7.5. All the samples exhibited *Hv* higher than 10.1 GPa. The highest value of *Hv* is 12.6 GPa (*x* = 7.5). The variation trend of *Hv* was similar to that of the relative density. As shown in Fig. 1, the specimens sintered at 1,500 °C were denser than which

sintered at 1,450 °C. Therefore, when composition was determined, Hv of the former was higher than that of the latter [29].

Like Vickers hardness, as shown in Fig. 5, the fracture toughness (K_{IC}) of $xLa_2O_3/10Nb_2O_5$ -(90–x)Al₂O₃ composite ceramics climbed to the maximum for x = 7.5 and then declined gradually with the increasing x. When $5.0 \le x \le 12.5$, the $xLa_2O_3/10Nb_2O_5$ -(90–x)Al₂O₃ composite ceramics exhibited fracture toughness exceeding 5.3 MPa·m^{1/2}, over 70% higher than that of Al₂O₃ ceramic (~3.0 MPa·m^{1/2}) [2].

Fig. 4. Vickers hardness (Hv) of $xLa_2O_3/10Nb_2O_5$ -(90–x)Al₂O₃ ceramics.

Fig. 5. Fracture toughness (K_{IC}) of $xLa_2O_3/10Nb_2O_5$ -(90–x)Al₂O₃ ceramics.

The micrographs of cracks propagation of $xLa_2O_3/$ $10Nb_2O_5$ -(90-x)Al_2O_3 (x = 7.5) ceramics, originating from the corners of Vickers indentations, are presented in Fig. 6. LaNbO₄ grains reveal transgranular fracture and absorb energy through domain switch before cracking [28]. This sort of energy absorption performed by LaNbO₄ grains in $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ ceramics, in some extent, is similar to ZrO_2 in Al_2O_3 ceramics [10, 30]. Remarkably, few columnar Al₂O₃ grains (marked as C-A with arrows in Fig. 6) with length-diameter ratio of about 3:1 were formed, i.e., some Al₂O₃ grains were induced to grow oriented by the combined addition of La₂O₃ and Nb₂O₅. The existence of columnar Al₂O₃ grains in the path of crack propagation forced the cracks to deflect and diverge, extending the length of cracks. In general, the combined effects of domain switching of LaNbO4, crack bridging and crack deflection play an important role in the significant improvement of the fracture toughness of

Fig. 6. SEM image of the crack propagation paths in $xLa_2O_3/10Nb_2O_5$ -(90–x)Al₂O₃ ceramics(A: Al₂O₃, LN: LaNbO₄, C-A: Columnar Al₂O₃): x = 7.5, 1,500 °C, 30 min.

 $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ ceramics. As a result, 7.5La_2O_3/10Nb_2O_5-82.5Al_2O_3 ceramic exhibited high fracture toughness: 6.2 MPa·m^{1/2}(1,500 °C, 30 min).

Conclusions

 $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ ceramics were synthesized via microwave sintering at 1,450~1,500 °C for 30 min. The relative densities of $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ ceramics are higher than 93%. The sintering temperature for preparing the composite ceramic was 150~200 °C lower than that of Al₂O₃ ceramic. LaNbO₄, columnar- Al_2O_3 grains and LaAl₁₁O₁₈ with plate-like shape were generated in-situ during the sintering period. The fracture toughness of $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ ceramics were enhanced by the synergistic effect of columnar-Al₂O₃ grains and domain-switched LaNbO₄ grains. Compared to Al₂O₃ ceramic, the fracture toughness of $xLa_2O_3/10Nb_2O_5-(90-x)Al_2O_3$ ceramics were at least 70% higher when $5.0 \le x \le 12.5$. The $7.5 \text{La}_2 \text{O}_3 / 10 \text{Nb}_2 \text{O}_5$ -82.5Al₂O₃ ceramic exhibited superior mechanical property: Hv = 12.0 GPa, $K_{IC} = 6.2$ MPa·m^{1/2}(1,500 °C, 30 min).

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No.51664043, No. 51802140 and No.51064022) and Natural Science Foundation of Jiangxi Province (20192BAB206007)

References

- 1. Q.B. Tian, J.S. Dai, Z.J. Lv, and T.G. Zhai, J. Ceram. Process. Res. 17[7] (2016) 676-680.
- 2. R. Danzer, T. Lube, P. Supancic, and R. Damani, Adv. Eng.

Mater. 10[4] (2008) 275-298.

- J.K. Yoon and I.J. Shon, J. Ceram. Process. Res. 17[8] (2016) 876-880.
- W. Acchar, C.A. Cairo, and A.M. Segadães, Mater. Sci. Eng. A 406[1-2] (2005) 74-77.
- 5. Z.B. Yin, C.Z. Huang, B. Zou, H.L. Liu, H.T. Zhu, and J. Wang, Mater. Sci. Eng. A 577 (2013) 9-15.
- E.M. Sharifi, F. Karimzadeh, and M.H. Enayati, J. Alloys Compd. 491[1-2] (2010) 411-415.
- M. Parchovianský, D. Galusek, J. Sedláček, P. Švančárek, M. Kašiarová, J. Dusza, and P. Šajgalík, J. Eur. Ceram. Soc. 33[12] (2013) 2291-2298.
- S.C. Jeong, S.H. Ahn, and K.W. Nam, J. Ceram. Process. Res. 17[10] (2016) 1088-1094.
- N.A. Rejab, A.Z.A. Azhar, M.M. Ratnam, and Z.A. Ahmad, Int. J. Refract. Met. Hard Mater. 36 (2013) 162-166.
- V. Naglieri, P. Palmero, L. Montanaro, and J. Chevalier, Materials 6[5] (2013) 2090-2102.
- Y.L. Ai, F. He, B.L. Liang, W. He, and W.H. Chen, Adv. Mater. Res. 338 (2011) 120-123.
- 12. Y.F. Hsu, Mater. Sci. Eng. A 399[1-2] (2005) 232-237.
- Y.L. Ai, F. He, B.L. Liang, W. He, and W.H. Chen, Key Eng. Mater. 519 (2012) 265-268.
- Y.Q. Wu, Y.F. Zhang, X.X. Huang, B.S. Li, and J.K. Guo, J. Mater. Sci. 36[17] (2001) 4195-4199.
- Z.L. Zhang, L. Zhou, Y.G. Hu, and L. Jiang, Scripta Mater. 47[9] (2002) 637-641.
- 16. T. Takagi, Y.H. Choa, T. Sekino, and K. Nihara, Key Eng.

Mater. 161-163 (1998) 181-184.

- 17. D.L. Johnson, Ceram. Int. 17[5] (1991) 295-300.
- 18. J.D. Katz, Annu. Rev. Mater. Sci. 22[1] (1992) 153-170.
- A. Chatterjee, T. Basak, and K.G. Ayappa, AIChE J. 44[10] (1998) 2302-2311.
- W. Liu, F. Xu, Y. Li, X. Hu, B. Dong, and Y. Xiao, Materials 9[3] (2016) 120.
- 21. K.H. Brosnan, G.L. Messing, and D.K. Agrawal, J. Am. Ceram. Soc. 86[8] (2003) 1307-1312.
- Y. Bykov, S. Egorov, A. Eremeev, V. Kholoptsev, I. Plotnikov, K. Rybakov, and A. Sorokin, Materials 9[8] (2016) 684.
- 23. J.P. Cheng, D. Agrawal, Y.J. Zhang, and R. Roy, Mater. Lett. 56[4] (2002) 587-592.
- 24. C.Y. Fang, C.P. Wang, A.V. Polotai, D.K. Agrawal, and M.T. Lanagan, Mater. Lett. 62[17-18] (2008) 2551-2553.
- 25. H.S. Hao, L.H. Xu, Y. Huang, X.M. Zhang, and Z. P. Xie, Sci. China Ser. E 52[9] (2009) 2727-2731.
- 26. W. He, Y.L. Ai, B.L. Liang, W.H. Chen, and C.H. Liu, Mater. Sci. Eng. A 723 (2018) 134-140.
- D. Zymelka, S. Saunier, D. Goeuriot, and J. Molimard, Ceram. Int. 39[3] (2013) 3269-3277.
- 28. Y. Liu, F.F. Min, J. B. Zhu, and M.X. Zhang, Mater. Sci. Eng. A 546 (2012) 328-331.
- 29. P. Figiel, M. Rozmus, and B. Smuk, J. Achi. Mater. Manu. Eng. 48[1] (2011) 29-34.
- S. Abbas, S. Maleksaeedi, E. Kolos, and A. Ruys, Materials 8[7] (2015) 4344-4362.