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The structural configurations of atoms constituting materials are one of the fundamental factors in the study of the physical
properties of materials. Presented in this paper is a mathematical and computational methodology based on Euclidean Voronoi
diagrams to efficiently classify a given atomic structure of an Al-Co composite material into groups of atoms with BCC, FCC,
and HCP crystal structures. In this paper, the presented mathematical theory has been applied to analyze a multi-layer atomic
structure with a geometric perspective so that the best conditions for thin film growth can be found.
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Introduction

Techniques to understand and control microscopic
systems are important because they provide ways to
control material properties. For instance, the defects in
geometric arrangements of atoms in a material have
critical influences on mechanical behavior such as the
distribution of strain and mechanical strength [1, 2].
The electronic and chemical characteristics of materials
also change by the existence of impurities in the
material. For example, impurities enhance the mechanical
characteristics of materials by protecting the material
from the possible propagations of cracks and dislocations
[3, 4].

The followings are important geometric factors affect-
ing the material properties: While pores, dislocations,
cracks, and grain boundaries affect the material proper-
ties on a microscale the arrangement of atoms, the
order of stacks, and lattice mismatches influence them
in on a nanoscale.

For the investigation of the above properties, there-
fore, a method to model grains based on a theory of
geometry has become inevitable since it can provide an
effective and efficient tool which can analyze facts and
phenomena of materials where it is very difficult to do
experiments. Among possible tools, molecular dynamics
handles the movement of atoms using their potentials
and is usually adopted as a simulation tool to replace
experiments for the arrangements and movements of
atoms, crystal growth, the propagation of grain boun-
daries, etc.

Voronoi diagrams have diversely been used as an

atomic simulation tools like molecular dynamics in
material science. One of the fields of using a Voronoi
diagram is to make substrates consisting of a poly-
crystalline structure. Each crystallite has its particular
structure and orientation, however, there are nearly no
relationship among the crystallites. Hence, the space
between the crystallites with a different structure and
orientation should be filled under a reasonable assump-
tion so that a Voronoi diagram may be introduced to
make the substrate. Moreover, there are applications for
spatial problems. For example, analyzing the distribu-
tions of voids and investigating the structure of grains
[2, 5-9] are examples of these. We found an interesting
study using a Voronoi diagram to study the distribution
of voids in a porous material [30].

Presented in this paper is a computational algorithm
with a few geometric conditions on the fundamental
three crystal structures: Body-Centered Cubic (BCC),
Face-Centered Cubic (FCC), and Hexagonal Closed-
Packed (HCP). Note that the geometric conditions for
these three crystal structures are described in our
previous paper [22]. Based on the geometric observa-
tions, a powerful and well-known computational tool
called a Voronoi diagram and its use are introduced in
this paper. Finally, the result of the structural extraction
from an Al-Co composite material are presented and a
few experiments are described. We want to note that a
group of Russian scientists lead by Medvedev has been
working on a similar problem with a slightly different
perspective [10-15]. As early as 1987, Medvedev
developed a theory to extract local geometric structures
among nearly atoms using Voronoi diagram [15].

Euclidean Voronoi Diagram of atoms

Suppose that a finite number of distinct geometric
entities, which we call generators, are given in a space.
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If we allocate all locations in this space with the closest
member among the generators with respect to the
Euclidean distance, the partition of the space into a
number of regions results. Such a partition is a
tessellation of the space and called the Euclidean
Voronoi diagram of the given generators where each
region is called a Voronoi region [24]. 

The most critical part of the process is to locate the
neighboring atoms for a given atom and we take
advantage of an Euclidean Voronoi diagram of atoms
constituting the material. The computation of a Voronoi
diagram can be done by a library such as CGAL [35].
In CGAL, the neighboring generators for a given
generator are found by using a tetrahedron in 3D space.
Note that each tetrahedron has four generators. Hence,
if the neighboring tetrahedrons with a given generator
for a particular tetrahedron are found, all neighboring
generators are located for a given generator. After
computing a Voronoi diagram, it is quite easy to find
information from among the neighbors so that the
computation of distance and angular conditions in the
crystal structure extraction can be efficiently performed
[17, 18].

While the computational technique for an ordinary
Voronoi diagram of points in 2 and 3D has been known
quite well and efficient programs are available, the
Voronoi diagrams for circles and spheres were not
possible to compute until very recently. According to
[19-21], Voronoi diagram of thousands of circles can
be now computed in a few seconds while one for one
thousand spheres can be computed in the order of ten's
of seconds with a low-end personal computer.

Extraction of Crystal Structures

For extraction of crystal structures, the needs of a
Voronoi diagram are essential to search the neighboring
atoms next to a particular atom extracted by a certain
crystal structure. Hence, the efficiency of a Voronoi
diagram for extracting crystal structures from just the
location of atoms is as follows.

Once either a Voronoi diagram or a Delaunay tri-
angulation is given in an efficient data structure, it is
quite easy to traverse immediate neighbors for a given
generator. For example, if a particular generator is
given, its immediate neighboring generators can be
located in a linear time of the number of neighbors. In
a planar case of a Delaunay triangulation, for example,
a triangle next to a particular triangle can be found in a
constant time. In 3D, similar observation holds and a
neighboring tetrahedron for a particular tetrahedron can
be located in a constant time. Therefore, a neigh-
borhood search for a given 3D atomic structure can be
very efficiently done once its Voronoi diagram is
computed [21, 29, 31, 32].

In [22], the geometric conditions inherent to BCC,
FCC, and HCP crystal structures have been presented.

In report, an atom in a BCC structure should satisfy 28
angular conditions with 3 distinct angles, while a FCC
structure has 66 angular conditions with 4 distinct
angles. On the other hand, a HCP structure requires 66
angular conditions with 6 distinct angles. All three
crystal structures have distance conditions with an
identical distance between atoms.

To extract the crystal structures from substrates
obtained from MD simulations, the Voronoi diagram
for each substrate is computed so that the neighboring
atoms for a particular atom can be efficiently located.
Once the neighbors are located, the angular and
distance conditions as summarized in the above are
checked to see if they satisfy them. The following
pseudocode summarizes the algorithm to extract grains
with different crystal structures from substrates.

Experiments of crystal structure extraction

The algorithm explained in the previous section was
implemented and tested against material data sets
obtained from molecular dynamics simulations and the
test results are given as follows.

Model data file description
To create a material data set, the embedded-atom

method (EAM) based on interatomic potentials, as
explained in [36], was utilized. In the present study, we
have employed the potential developed by Pasianot and
Savino for Co-Co [37], and Voter and Chen potential
for Al-Al [38]. The pair potential of Co-Al was obtain-
ed by a linear combination of the effective pair
interactions given by the following formula [39].

(1)

where  denotes the interpolation distance
between two atoms and the parameters a, b, c, d, e and
f are listed in Table 1. The Co-Co, Al-Al and Co-Al
potentials employed showed good agreements with the
experimental values for the pure elements as well as
those for the intermetallic properties between atoms.

The substrate produced contained 1,440 atoms with
planes normal to the surface forming ten layers of
(001) planes containing 144 atoms each. The dimen-
sions of the substrate were 12a0×6a0×5a0, where a0 was
the bulk lattice constant for the surface normal to the z
direction. Periodic boundary conditions were utilized in
the x and y directions. To mimic a surface, the position
of the bottom-most two layers was fixed and the

VCoAl
eff a bx+( )=A xVCoAl

eff c dx+( )+ 1 x–( )VCoAl
eff e fx+( )[ ]

0 x 1≤ ≤

Table 1. Parameters for Co-Al interatomic pair potential. Energies
are in eV, distances in Å

a  b  c  d  e  f Å

1.690  4.0 1.910996 3.643984  1.75373  3.509799 1.0909091 
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substrate was kept at 300 K using the atom-velocity-
rescaling method. The adatoms were randomly positioned
in the xy plane at a distance of 30 Å from the substrate
surface. The initial velocity of each incident atom can
be calculated from the incident energy by the following
expression:

(2)

where Ki represents the initial kinetic energy and M is
the atomic mass. The MD time step was set to 1 femto-
second (fs), and the system was fully relaxed for each
additional adatom in the limit of 5 pico-second (ps).
The XMD 2.5.32 code of Rifkin was utilized for the
MD simulation [40].

Figure 1(a), (b), and (c) illustrate the substrates
produced by the molecular dynamics software with
parameters Ki=0.1 eV, 3.0 eV, and a modulated Ki

between both 0.1 and 3.0 eV's, respectively. Among
5,458 atoms (Al: 3,627, Co: 1,831) constituting the
substrates, shown in grey colors are Al atoms and dark
grey colors are Co atoms.

In Fig. 1(a), the initial layer Layer-1 consisting of Al
atoms are given. Then, Co atoms were deposited with
Ki=0.1 eV to form a second layer Layer-2. After some
number of Co atoms were deposited, the third layer
Layer-3 was created by depositing Al atoms with an
identical Ki condition. Note that the interface between
Layer-1 and Layer-2 was relatively smooth while the
other interface was rather bumpy.

On the other hand, Fig. 1(b) shows the opposite case.
When Ki is 3.0 eV, the first interface was rather
fluctuating while the second interface was relatively
smooth.

The phenomenon in Fig. 1(a) is explained by “Transient
mobility” and “Downward funnelling” models proposed
for describing layer-by-layer growth and “Steering
effects” which are induced by a strong attraction force
between the adatom and substrate. “Steering effects”
were proposed for explaining the surface roughening
with the low incident energy [25-27]. On the other
hand, the roughness on the first interface in Fig. 1(b) is
explained by an “Impact cascade diffusion” model.
This model suggest that the impacting atom knocks out
adatoms on the surface with high incident energy for
layer-by-layer growth [28].

The objective of this experiment was to find a
condition that produced rather smooth interface in both
case. Hence, we experimented with a third substrate by
combining both experiments. Consider Fig. 1(c) which
consists of two layers Layer-1 and Layer-2, instead of
three. We first deposited half of the Co atoms with Ki=
0.1 eV on the given initial Al atoms at the bottom.
Then, the other half of the Co atoms and all the Al
atoms on the top were deposited with Ki=3.0 eV. The
result turned out to give rather smooth interfaces for
both cases.

The experiments for an Al-Co composite material
We have run the program implementing the

presented algorithm through three substrates above.
Shown in Fig. 2(a) and (b) are the substrate with K=0.1
eV and the extracted crystal structures, respectively. In
Fig. 2(b), the black, gray, and white atoms illustrate the
grains with structures in BCC, FCC, and HCP, respec-
tively. This particular grain boundary was computed
using the angular tolerance of 0.15 radians and the
distance tolerance of 0.15 Å. As expected, we can see
the BCC structure in between FCC and HCP structures.
Shown in Fig. 2(c) is the distribution of atoms in BCC,
FCC, and HCP structures with respect to the different
values of tolerances for angles and distances among
atoms. Figures 3 and 4 show similar experiments with

Vadatom=
2Ki

M
--------

Fig. 1. (a) Ki=0.1 eV. (b) Ki=3.0 eV. (c) Modulate Ki.

Fig. 2. (a) K=0.1 eV. (b) Black: BCC, Gray: FCC, White: HCP,
and Gray: NONE. (c) Frequency.

Fig. 3. (a) K=3.0 eV. (b) Black: BCC, Gray: FCC, White: HCP,
and Gray: NONE. (c) Frequency.

Fig. 4. (a) Modulate K. (b) Black: BCC, Gray: FCC, White: HCP,
and Gray: NONE. (c) Frequency.
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substrates with K=3.0 eV and the modulate.
Using the above-described substrates, we have tested

our theory using various values of tolerances for the
extraction of grain boundaries. Shown in Fig. 5 are the
frequencies of each grain plotted in one graph. Fig.
5(a), (b), and (c) are the frequencies of BCC, FCC, and
HCP structures.

Figure 5 shows that the distance and angular tolerances
when most of atoms are 0.35 Å and 0.35 rad under
Ki=0.1 eV, 3.0 eV, and Modulated Ki, respectively.
When Ki is 0.1 eV which means the low incident
energy, 1,589 BCC atoms are extracted as the highest
peak. In Fig. 5(b), the number of FCC atoms are nearly
the same with both 0.1 eV and Modulated  Ki and the
number of FCC atoms are found under the 3.0 eV
condition is smaller than the others, in general. Shown

in Fig. 5(c) is the frequency of HCP atoms extracted
under the three energy conditions. The largest number
of HCP atoms is 358 when the energy condition is 3.0
eV. The computing environment used in the experiment
is as follows: Pentium IV with 2GH clock speed and
512 MB of main memory.

Conclusion

This paper has presented a theory to extract grains
satisfying the crystal structures of BCC, FCC, and
HCP. Based on a few geometric observations and
Euclidean Voronoi diagrams discussed in our earlier
paper [22], a number of substrates consisting of Al and
Co atoms produced via MD simulations were tested. 

The technique presented has been applied to find an
appropriate process parameters for investigating the
optimal conditions for appropriate geometric properties
of the atomic structure in multi-layer composite materials
such as thin films. Based on experiments, we have
given statistics characterizing the spatial properties of
given substrates consisting of Al and Co atoms.

The advantages of the proposed technique stems
from the powerful geometric properties of Voronoi
diagram of atoms. Once a Voronoi diagram is
available, isolating neighbors of a particular atom can
be efficiently done so that the geometric conditions
among them can be performed easily as well.

The theory presented can be, in future, applied to
characterize grains with B2, L11, L12, and other
structures. In addition, the grain boundaries and
properties of a material can be also analyzed under the
circumstances of different conditions of temperature,
stress, shock wave, and so on.
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