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In the evaluation of material properties, the structural configuration of atoms constituting the material is of importance.
Presented in this paper is a mathematical and computational methodology to efficiently classify a given atomic structure of
an arbitrary material into groups of atoms defining BCC, FCC, and HCP crystal structures. The approach is based on the
angular distributions among neighboring atoms efficiently identified by a computational geometry technique called a Voronoi
diagram. Usually a Voronoi diagram consists of Voronoi regions for each atom where a Voronoi region consists of points in
space which is closer to an associated atom than the others. Due to the computational efficiency of a Voronoi diagram, the
proposed approach becomes more powerful as the number of atoms is increased.
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Introduction

The evaluation of physical properties in materials
from a microscopic viewpoint has been an aim of
material science for several decades. The technique to
understand and control microscopic systems is important
because it provides a way to control material properties.
As technologies are developed, the similar evaluation
and design of materials on even an atomic scale have
become more important. Since the understanding of
atomic structure inherently contains geometric aspects
in addition to the physics among atoms, it is important
to make observations on the spatial properties among
atoms which constitute materials [1, 2].

Materials consist of atoms. When atoms are contiguous
in 3-dimensional space with a regular structure, the
aggregate of atoms is called a grain. As the size of a
grain under investigation becomes smaller such as on a
nano scale and as more atoms are considered
simultaneously, the need for computer simulation is
inevitable to evaluate material properties. Even though
there have been a strong desire to understand the
spatial structure among atoms in a simulation, there
have been not sufficient computational tools to meet
such a requirement [1, 2].

Presented in this paper is a mathematical and
computational theory for extracting grains of different
crystal structures of Body-Centered Cubic (BCC),
Face-Centered Cubic (FCC), and Hexagonal Closed-

Packed (HCP) from a set of atoms constituting a
material. To devise such a computational tool, we provide
a few geometric observations on the fundamental three
crystal structures so that a computational algorithm can
be built on them. Based on the geometric observations,
a very well-known computational geometrical tool
called the Voronoi diagram is introduced so that a
geometrical observation can be easily applied. It is
noteworthy that a group of Russian scientists lead by
Medvedev has been working on a similar problem with
a slightly different perspective [3-8]. As early as 1987,
Medvedev developed a theory to extract local geometric
structures among nearly atoms using Voronoi diagram
[9].

Voronoi Diagram

Suppose that a finite number of distinct geometric
entities, which we call generators, are given in a space.
If we allocate all locations in this space with the closest
member among the generators, the partition of the
space into a number of regions results. Such a partition
is a tessellation of the space and called the Voronoi
diagram of given generators where each region is
called a Voronoi region [14].

Mathematically speaking, a Voronoi diagram in 3D
can be defined as follows. Suppose that G=g1, ..., gn}⊂
R3, where 1 < n < , are a set of generators. Then,
VR(gi)={x | d(x, gi) ≤ d(x, gj) for } is called a
Voronoi region for gi where d(p1, p2) is a distance
between p1 and p2, and the set given by VD={VR(g1),
..., VR(gn)} is called a Voronoi diagram for the set G.
Even though there can be different definitions of distances
depending on applications, the Euclidean distance is

∞
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usually employed in most problems as in this paper. In
other words, d(p1, p2)=
where p1=(x1, y1, z1) and p2=(x2, y2, z2).

Shown in Fig. 1 are three examples of such Voronoi
diagrams in 2 and 3D. Fig. 1(a) shows an example of a
Voronoi diagram for points in a plane. Hence, any
location in a polygon is closer to the generator point,
shown as a black dot, in the polygon than any other
point in the space. Shown in Fig. 1(b) is a similar
diagram but with circles instead of points as generators.
Hence, any location in a curved Voronoi region is
closer to the circle in the region than to any other
circles in the plane. On the other hand, Fig. 1(c)
illustrates a similar Voronoi diagram of spheres in 3D.
Hence, the curved polyhedron illustrates the Voronoi
region for a sphere at the center of the structure.

While the computational technique for an ordinary
Voronoi diagram of points in 2 and 3D has been known
quite well and efficient programs are available, the
Voronoi diagrams for circles and spheres were not
possible to compute until very recently. According to
[10-12], Voronoi diagram of thousands of circles can
be now computed in a few seconds while one for one
thousand spheres can be computed in the order of ten's
of seconds with a low-end personal computer.

Given a Voronoi diagram such as Fig. 1(a), let's
define an edge between two point generators which
share a Voronoi edge. If we apply this operation for all
such pairs, we can get another tessellation called a
Delaunay triangulation as shown in Fig. 2. Hence, the

Voronoi diagram and Delaunay triangulation are said to
be dual to each other. Note that the dual transformation
can be done in a linear time with respect to the number
of Voronoi [13].

Once either a Voronoi diagram or a Delaunay
triangulation is given in an efficient data structure, it is
quite easy to traverse immediate neighbors for a given
generator. For example, if a particular generator is
given, its immediate neighboring generators can be
located in the linear time of the number of neighbors.
In a planar case of Delaunay triangulation, for
example, a triangle next to a particular triangle can be
found in a constant time. In 3D, a similar observation
holds and a neighboring tetrahedron for a particular
tetrahedron can be located in a constant time.
Therefore, a neighbor search for a given 3D atomic
structure can be very efficiently done once its Voronoi
diagram is computed [12, 15, 17, 18].

While the computation of an ordinary point set
Voronoi diagram can be done by a library such as
CGAL, its counterpart for spheres with different radii
has become possible only very recently [21]. In CGAL,
for example, the topology of an ordinary Voronoi
diagram is represented by a Delaunay triangulation
which is the dual of the Voronoi diagram.

Geometric Observations in Fundamental 
Crystal Structures

It is known that there are three fundamental crystal
structure types in most materials: Body-Centered Cubic
(BCC), Face-Centered Cubic (FCC), and Hexagonal
Closed-Packed (HCP). From a geometrical viewpoint,
BCC has a cubic unit cell with atoms located at all 8
corners of the cell and a single atom at the center of the
cube. Each of the eight corner atoms can be considered
to play the role of the center atom when neighboring
cubes are considered altogether. Similarly, FCC has
also a cubic unit cell with atoms located at each of the
8 corners and the 6 centers of all faces of the cube.
HCP, on the other hand, assigns 17 atoms at the
appropriate places around a hexagonal cylinder: 12
atoms at the corners of the hexagonal cylinder, an atom
for each of top and bottom hexagonal faces of the
cylinder, and 3 atoms inside the cylinder.

Based on these configurations of atoms, we have
made a few geometric observations so that they can be
used for the assessment of material properties. Shown
in Fig. 3(a) is a model of the BCC structure consisting
of identical atoms and Fig. 3(b) illustrates the Voronoi
region of the center atom among the 9 given atoms. It
should be remembered that such a BCC structure
repeats itself in the crystal. Since the center atom is
located at the center of the unit cell, the eight
neighboring atoms are located in the space at an
identical distance. In addition, the angles formed at the
center atom with respect to the two immediate

x1 x2–( )2 y1 y2–( )2 z1 z2–( )2+ +

Fig. 1. (a) Point, (b) Circle, and (c) Sphere set Voronoi diagram.

Fig. 2. Delaunay triangulation.
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neighbors are also identical.
From the model, we can define three different kinds

of angles among the atoms in the system: , , and
.  is defined at the center atom with respect to

two immediate neighboring atoms at the vertices of the
cube. For example, an example of angle type  is the
angle  since the atoms a1 and a4 are immediate
neighbors from each other. Similarly,  and

 are also instances of .  is defined at the
center atom with two non-immediate neighboring and
non-diagonal atoms at the vertices. For example, the
angles  and  are the examples of .
Lastly,  is defined at the center atom with respect to
diagonal atoms at the vertices. For example, the angles

 and  are examples of . Shown in
Fig. 3(b) is a Voronoi region of the center atom with
respect to only eight neighboring atoms.

Based on the above-described BCC-model, we can
draw a simple yet important lemma regarding the
angles in the model as follows. Part 1 discusses the
distribution of different angles in the system and Part 2
discusses the values of different angles.

Lemma 1 Suppose that a BCC unit cell is given.
Then, the following holds.

1. There are 28 distinct angles, in total, defined at the
center atom with respect to the vertex atoms.

2. There are 12 cases of  angles, 12 cases of 
angles, and 4 cases of  angles defined at the center
atom.

3. ≈70.5288o, ≈109.4712o, and =180.0000o.

Proof: (Part 1 and 2) Since there are 8 vertex atoms,
there can be =28 distinct angles defined at the
center atom in a BCC unit cell. For a vertex atom a1,
there can be three  with vertex atoms a2, a4 and a5.
Since there are eight vertex atoms, there can be 3*8=24
combinations of angles where each angle is doubly
counted. Hence, there are 12 cases of  angles in a
BCC unit cell. A similar argument holds for . Since
there is only one diagonal atom for a given vertex
atom, there are only 4 cases of  angles in a BCC unit

cell.
(Part 3) Assuming that the constituting atoms are

equally sized, we can find the value of angle  as
follows. Let ci be the center of atom ai. Suppose that
the centers c5, c6, c0 of atoms a5, a6, a0 be located at the
origin, (d, 0, 0), and (d/2, d/2, d/2) in the coordinate
system, respectively.

Let =c5-c0 and =c6-c0. Then, =  and

= . Hence, the inner product = + +

= . Note = =  and =

= . Therefore, ≈70.5288o can

be obtained since θ=cos−1 =cos−1 =cos−1

. Since =π− , it turns out that ≈109.4712o.

 is obviously 180o. □

Closer investigation of FCC and HCP structures
provides similar observations, and we summarize them
here without the details of the derivation.

Lemma 2 Suppose that a FCC unit cell is given.
Then, the following holds.

1. There are 66 distinct angles, in total, defined at the
center atom with respect to the vertex atoms.

2. There are 24 cases of  angles, 12 cases of 
angles, 24 cases of  angles, and 6 cases of  angles
defined at the center atom.

3. =60o, =90o, =120o, and =180o.

Lemma 3 Suppose that a HCC unit cell is given.
Then, the following holds.

1. There are 66 distinct angles, in total, defined at the
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Fig. 3. (a) a geometric model of BCC-structure and  (b) the
Voronoi region for the center atom with respect to only eight
neighboring atoms in the BCC-structure.

Fig. 4.  angle in BCC.θ1
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center atom with respect to the vertex atoms.
2. There are 24 cases of  angles, 12 cases of 

angles, 3 cases of  angles, 18 cases of  angles, 6
cases of  angles, and 3 cases of  angles defined
at the center atom.

3. =60o, =90o, ≈109.4712o, =120o, ≈
146.4426o, and =180o.

Crystal Structure Extraction

The above-discussed three lemmas can be efficiently
used to extract the boundaries of crystal structures for a
given set of atoms. The most critical part of the process
is to locate the neighboring atoms for a given atom, we
take advantage of an Euclidean Voronoi diagram of
atoms constituting the material. Since the neighbors can
be easily located once a Voronoi diagram is available, the
calculation of angles and distances among neighbors
can be done easily.

Let A={a1, ..., an} be a material substrate consisting
of atoms ai. Then, let VD(A) be the Euclidean Voronoi
diagram of the atoms. Given VD(A), we apply Lemmas
1 through 3 for each atom and check if the atom
satisfies one of the lemmas. By collecting the set of
atoms satisfying each lemma, we can isolate a grain
with a single crystal structure.

Figure 6 shows an example of such an experiment. In
Fig. 6(a), there are 5,458 atoms generated by molecular
dynamics software XMD 2.5.32 with Al and Co atoms
constituting the substrate [20, 22]. In the substrate,
there are 3,627 Al and 1,831 Co atoms, respectively.
Note that Al and Co atoms are known to form FCC and
HCP structure in general, and the radii of Al and Co
are 1.43 Å and 1.25 Å, respectively. As the initial
condition for XMD run, the inter-atomic distances
between Al atoms was set at 2.86 Å, between Co atoms
was set at 2.51 Å, and the distance between Al and Co
atoms was set at 2.68 Å, respectively.

Using the above lemmas and Voronoi diagram, the
grains with three crystal structures are extracted and
some statistics are obtained. For example, Fig. 6(a)
shows the input substrate and Fig. 6(b) shows the

extracted structures of BCC in a black color, FCC in a
gray color, and HCP in a white color. Note that the
atoms which do not belong to any crsytal structure are
not shown in the Fig. 6(b).

Since the angles and distances are represented in
floating numbers, it is inevitable to employ tolerances
when numbers are compared to test. More importantly,
the vibration of atoms also requires the concept of
tolerances as well. In the current experiment, we
adopted the value of 0.15 for both angular tolerance (in
radians) and distance tolerance. Note that 0.15 radian is
approximately 9o.

Conclusions

In this paper, for the classification of three crystal
structures from an arbitrary material, the Voronoi
diagram as a powerful tool for analyzing spatial attributes
was presented. Especially, the useful property of
searching a neighbor in a Delaunay tessellation, which
is a dual of Voronoi diagram, is applied. Also,the
distinct number and value of angles for each crystal
structure (BCC, FCC, and HCP) are introduced by
lemmas. Therefore, using the properties based on
angular distribution of each crystal structure and its
Voronoi diagram, the crystal structure extraction can be
applied to analyze the structure of material and
information on grains quantitatively from the location
of atoms in 3D space.

For the future work, there are more observations for
other crystal structures and we can analyze the grain
boundary of a material under the parameters such a
temperature, stress, shock waves, and etc.
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Fig. 5. Voronoi regions for a center atom: (a) FCC-Model and (b)
HCP-Model.

Fig. 6. (a) Al-Co 5458 atoms-Gray: NONE and (b) BCC, FCC,
and HCP atoms after extraction-Black: BCC, Gray: FCC, and
White: HCP.
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