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Calculations are presented for the magnitude of the dispersion forces at rutile − vacuum − rutile, rutile − silica − rutile and
rutile − water − rutile planar interfaces for the non-retarded limit. The calculations for rutile − vacuum − rutile and rutile −
silica − rutile predict values of the Hamaker constant close to those determined through full spectral calculations using
experimentally-determined interband transition strengths. However, subtle differences between these two approaches emerge
when predicting trends in the Hamaker constant as a function of the orientation of the anisotropic rutile grains.
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Introduction

The magnitudes of the dispersion forces arising from
the van der Waals interaction between bulk materials
are important in a number of processes relevant to
ceramics at the nanometre level [1]. Thus, for example,
dispersion forces help to determine both the behaviour
of colloidal suspensions and the equilibrium thickness
of remnant silica-rich amorphous intergranular thin
films at interphase boundaries in engineering ceramics.
Dispersion forces have their origin in induced-dipole/
induced-dipole interactions arising from electrodynamic
fluctuations at an atomic level [1-3]. When describing
dispersion forces for a particular geometry of materials
it is often useful to quote their magnitude in terms of a
Hamaker constant, A. One geometry of particular
interest to engineering ceramics because of its wide
applicability to many practical situations is that of two
parallel planar surfaces between which there is an
intervening medium. While analytical formulae of
differing degrees of complexity and approximations are
readily available in the literature to calculate A for the
case of a thin isotropic medium between two isotropic
media [1-6], there are relatively few discussions of the
effect of anisotropy arising from the dielectric
properties of these different media.

In their analysis of interphase boundaries between
hexagonal boron nitride, a highly anisotropic material
in terms of its optical and dielectric properties, and 3C
SiC, Knowles and Turan demonstrated that in the non-
retarded limit A will be sensitive to the orientation of
the interphase boundary relative to the crystal axes of
hexagonal boron nitride [7]. French et al. [8] have

determined values of A for boundaries with either
vacuum or silica glass between rutile single crystals
through full spectral calculations using experimentally-
determined interband transition strengths and have
reported a slight dependence of A in the non-retarded
limit on the orientation of the rutile single crystals
relative to the boundary orientation. It is noteworthy in
the work of French et al. that, for the particular
boundaries they considered, there is a large discrepancy
between the Hamaker constants they determined
through the full spectral method and those they
determined by calculation through the Tabor-Winterton
approximation using a common characteristic absorp-
tion frequency νe of 3 × 1015 s−1 for both rutile and
silica glass. French et al. rationalised this discrepancy
in terms of the relatively high refractive indices
exhibited by rutile causing the Tabor-Winterton
approximation to become invalid. However, they did
not undertake any calculations to demonstrate this
conclusively.

In this paper, the mathematical analysis of Knowles
and Turan [7], which uses the approach of Parsegian
and Weiss [9] to analyse the van der Waals interaction
between two semi-infinite anisotropic media either side
of a slab of anisotropic material in the non-retarded
limit, is extended to theoretical calculations of Hamaker
constants between crystals of rutile with an intervening
thin film of either vacuum, silica glass or water. These
revised calculations produce improved predictions of
the Hamaker constants much closer to those determined
through the full spectral method, while also highlight-
ing differences between predicted trends in A as a
function of the orientation of the rutile single crystals
determined from this analysis and the trends determined
from the full spectral calculations of French et al. using
the experimentally determined interband transition
strengths.
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Analytical approximations of Hamaker
constants for isotropic media

For the case of a thin planar slab of material ‘3’ of
thickness L between two materials ‘1’ and ‘2’ in the
form of semi-infinite plates, the interaction energy per
unit area, G(L), takes the form

(1)

where A132 is the Hamaker constant [1-6]. For accurate
predictions of Hamaker constants from Lifshitz theory
for such a geometry, the behaviour of the dielectric
permittivity as a function of frequency needs to be
known for each material in detail. However, as others
have noted (e.g., [1-6]), the overwhelming contribution
to the Hamaker constant in ceramics and other
insulating materials comes from high frequencies in the
visible and ultra-violet associated with transitions
across the band gap. A lesser contribution comes from
the static dielectric constants of the materials ‘1’ and
‘2’ and the intervening material ‘3’.

The most simple analytical description of the di-
electric permittivity for ceramics and other insulating
materials is that it can be represented in terms of a
static dielectric constant together with a single high
frequency absorption peak of zero bandwidth [1-6]. If
the frequencies at which the absorption peaks arise in
the three materials are the same, and if the contribution
of the static dielectric constant is ignored, the approxi-
mation for the Hamaker constant in the non-retarded
limit (when L → 0) takes the form

(2)

where νe is the common characteristic absorption
frequency for all three materials, h is Planck's constant
and n1, n2 and n3 are the refractive indices of the three
materials, extrapolated to zero energy, or equivalently,
zero frequency [1]. This is generally known in the
literature as the Tabor-Winterton approximation [e.g.,
1, 8]. Tabor and Winterton were the first to derive a
special form of equation (2) for the situation where
materials ‘1’ and ‘2’ are the same and where material
‘3’ is air or vacuum [10].

A modified form of equation (2) which takes the
static dielectric constants ε1, ε2 and ε3 of the three
phases into account is

  (3)

where kB is Boltzmann's constant and T is temperature
[3]. It is usual in calculations using either equation (2)
or equation (3) for the common characteristic absorption
frequency νe to be taken to have a value of 3 × 1015 s−1

(see, for example, [1, 3]). Horn and Israelachvili [11]
have derived a slightly more complex form of equation
(3) for the situation where materials ‘1’ and ‘2’ have
the same absorption frequency but ‘3’ has a different
value of absorption frequency, and Prieve and Russel
[5] have derived a form of A132 for the most general
situation where the three materials have different
absorption frequencies ν1, ν2 and ν3.

Analytical approximations of Hamaker
constants for anisotropic media

For materials with a relatively large birefringence,
such as hexagonal boron nitride, calomel, HgCl, and
rutile, TiO2, for which values of no = 2.6158 and ne =
2.9029 at the wavelength of sodium light have been
reported in a geological sample as long ago as 1883
[12], it is not immediately apparent how the analytical
approximations for A in equations (2) and (3) valid for
isotropic media in the non-retarded limit should be
modified to take anisotropy into account without
looking at the underlying physics, nor is it immediately
apparent how to deal with cases where the anisotropic
materials have markedly different characteristic absorption
frequencies. Fortunately, however, it is possible to ex-
tend the work of Knowles and Turan [7] and Parsegian
and Weiss [9] relatively straightforwardly to the systems
rutile − vacuum − rutile, rutile − silica glass − rutile
and rutile − water − rutile of interest here to take
account of anisotropy, and then combine the results
from this extension with formulae given by Prieve and
Russel [5] to give predictions of Hamaker constants for
anisotropic materials with different characteristic ab-
sorption frequencies. Although these predictions are
simplified approximations, because of the description of
the dielectric permittivities of rutile, silica and water in
terms of a static dielectric constant and a single high
frequency absorption peak of zero bandwidth, this
analytical approach is computationally much simpler
than the full spectral method and also has the added
attraction of being transparent in the way in which it
deals with dielectric anisotropy.

For this, the general equations stated by Knowles and
Turan for the geometry shown in Fig. 1 can be used.
For anisotropic media 1-3, the dielectric tensors will be
of the form

(4)
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where the superscripts r specify the medium under
consideration. It is implicit in the analysis that the
coefficients of these dielectric tensors are frequency
dependent.

In the non-retarded limit, Knowles and Turan have
used the approach of Parsegian and Weiss [9] to show
that in its most general form G(L) is given by the
expression

(5)

where the prime on the summation indicates that the n
= 0 term is to be multiplied by 1/2 and where the sum
is to be taken over imaginary frequencies iξn where ξn

= 4π2nkBT/h. Terms within the integral are defined
through the expressions

(6)

(7)

where

(8)

For the situations in which we are interested here,
medium 3 can be taken to be isotropic, so that ε(3) =

ε3I, where I is the unit 3 × 3 matrix. Defining u = ρ cos
φ and v = ρ sinφ, it is apparent from equation (8) that
β3 = ρ. Expanding the logarithm term within equation
(5) in terms of an infinite power series and performing
the integration over ρ in equation (5), it follows that the
expression for G(L) becomes

(9)

and so using equation (1) the general expression for the
Hamaker constant A132 with this simplification
becomes

(10)

The first two very reasonable approximations to this
analytically correct expression for A132 are that the term
in m = 1 is the dominant term within the summation
over m and is the only term which needs to be retained,
and that secondly the summation over n can be
replaced by an integral from 0 to  [3, 6]. These
approximations lead to the simplified expression

(11)

where the frequency-dependent term 

(12)

and where the first term in the curly brackets in
equation (11) is this term evaluated at zero frequency.

If in Fig. 1 we assign media ‘1’ and ‘2’ to be semi-
infinite single crystals of rutile, the ‘c’ directions of
both crystals will in general make angles of θ1 and θ2

respectively with the normal to the interface planes
between ‘1’ and ‘3’ and ‘3’ and ‘2’. Here, we will
restrict ourselves to cases where these two ‘c’ directions
and the normal are coplanar. Under these circumstances,
we can assign the ‘y’ axis in Fig. 1 to be parallel to a
rutile ordinary ray direction in both crystals, so that the
particular forms of the dielectric tensor in media ‘1’
and ‘2’ are

, 

r = 1, 2 (13)
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Fig. 1. A planar slab of an anisotropic medium ‘3’ of width L
sandwiched between two semi-infinite anisotropic media ‘1’ and
‘2’, together with a reference orthonormal axis system.
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where

 r = 1, 2 (15)

Using the approximations to evaluating the integrals in
equation (11) discussed by Knowles and Turan [7], we
find that to a very good approximation the integral over
φ in the zero frequency term is

(16)

and the integral over φ in the frequency-dependent term
is

(17)

where

r = 1, 2 (18)

and

r = 1, 2 (19)

Thus, from both equations (18) and (19) it is
apparent that the effective dielectric constants of both
‘1’ and ‘2’ have contributions from both εro and εre for
all θr.

The expressions for  gives an expression for
the refractive index extrapolated to zero frequency:

r = 1, 2 (20)

so that  is of the form

r = 1, 2 (21)

where it is assumed for simplicity here that, even
though media ‘1’ and ‘2’ are both anisotropic, they can
both be modelled as having a single ultra-violet (UV)
absorption peak at a frequency νUVr of zero width for
their ordinary and extraordinary rays.

With these algebraic manipulations, we find 

(22)

where

 i = 1, 2 (23)

and where the subscript UV has been dropped for Ci

and νi, i = 1, 2, 3. The integral over dν is non-trivial,
but can be evaluated using the method of partial
fractions (see, for example, [5]). The result for A132 is
then the same as the general result for A132 quoted by
Prieve and Russel [5] with the effective static dielectric
constants and refractive indices extrapolated to zero
frequency in equations (18) and (20) replacing the
values for isotropic materials. Equation (22) reduces to
the simple isotropic case of equation (3) if ε1o = ε1e, ε2o

= ε2e and ν1 = ν2 = ν3.
We are now in a position to examine predictions of

Hamaker constants in the non-retarded limit for
crystals of rutile with an intervening thin film of either
vacuum, silica glass or water using this more general
form of the Tabor-Winterton approximation. To deter-
mine the positions of the absorption peaks of rutile and
silica, it is convenient to plot the variation of the
relevant refractive indices as a function of either
wavelength or frequency in the visible part of the
spectrum in the form of a Cauchy plot [4-6], in which,
for example, (n2−1) is plotted against (n2−1)ν2, where n
is the relevant refractive index and ν the wavelength
[4-6]. This arises from a consideration of equation (21)
since in the visible

(24)

where  is the characteristic absorption frequency in
the ultra-violet. After some algebraic manipulation we
find

(25)

where  is the characteristic wavelength of absorp-
tion. The refractive index predicted at zero frequency
(infinite wavelength) from this analysis, nvis0, is then
the required refractive index for the modified Tabor-
Winterton approximation in equation (22).

Cauchy plots for rutile and amorphous silica are
shown in Figs. 2 and 3 respectively using data from
[13] and [14]. Values of , CUV and nvis0 derived
from these plots are shown in Table 1. Not surprisingly,
the values for amorphous silica show good agreement
with those derived from a Cauchy plot by Hough and
White [4]. The data for rutile agree reasonably well
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with data obtained from Cauchy plots by Buscall [15]
and Larson et al. [16] using other source data. The data
in Table 1 show that, to a very good approximation
indeed, the ordinary ray and the extraordinary ray in
rutile can be considered to have a common UV absorp-
tion peak of zero width at a frequency of 1.20 × 1015 s−1.
This frequency is markedly lower than the absorption
frequency for amorphous silica of 3.211 × 1015 s−1

which by comparison is very close to the widely used
value of 3 × 1015 s−1. That the absorption peaks for the
ordinary and extraordinary rays for rutile are at relatively
low frequencies is consistent with the comment by
DeVore [13] that rutile has its absorption band close to
the visible region.

It follows from the data in Table 1 and a conside-
ration of the form of neff in equation (20) that when

interfaces ‘1’-‘3’ and ‘2’-‘3’ are both parallel to (001)
rutile, neff is 2.545, whereas when these interfaces are
parallel to (100) rutile, neff is 2.482 because of the
dominant contribution to neff of the component of the
dielectric tensor parallel to the z-axis in Fig. 1 and the
lesser contributions of the components along the the x-
and y-axes. This is in contrast to the trends in the nvis0

used by French et al. [8] in their Tabor-Winterton
calculations using equation (3) with a νe of 3 × 1015 s−1.

Examples of calculated non-retarded Hamaker constants
at 300 K for rutile − vacuum − rutile and rutile − silica
− rutile geometries in Fig. 1 are shown in Figs. 4 and 5
respectively. The static dielectric constants used for
rutile in the ordinary and extraordinary ray directions
are those quoted by Parker [17] and the static dielectric
constant for silica is the one quoted for fused silica by
Hough and White [4]. In these two figures the Hamaker
constants are plotted as a function of the angle θ that
the ‘c’ axes in both rutile grains are each taken to make
with the z-axis in Fig. 1. Thus when θ = 0°, the geometry
describes the arrangement (001) rutile − medium −
(001) rutile and when θ = 90° the arrangement (hk0)
rutile − medium − (hk0) rutile is described within
which the two [001] rutile directions lying in the
boundary planes at z = 0 and z = L are parallel. In Fig.
4 the temperature-dependent term which contains the
static dielectric constants in equation (22) contributes a
value between 2.990 zJ (for θ = 90°) and 3.005 zJ (for
θ = 0°) at 300 K, emphasising the overwhelming
importance of the term in equation (22) dependent on
the various UV oscillator strengths.

Using averaged values of νUV and CUV from his
analysis of Cauchy plots for rutile Buscall [15] reports
a Hamaker constant of 155.9 zJ for rutile − vacuum −
rutile at 298 K. Bergström [6] quotes a Hamaker constant
of 143 zJ at 298 K for rutile − vacuum − rutile using
equation (3) and the value of the characteristic absorp-
tion frequency for ‘average’ rutile quoted by Buscall
[15]. Both these single-valued estimates are significantly
closer to the data in Fig. 4 and the Hamaker constants
of 170-180 zJ obtained by French et al. [8] through the
full spectral method using interband transition strengths
than the values of ~ 400 zJ quoted by Israelachvili [3]
and French et al. [8] using the Tabor-Winterton
approximation with νe of 3 × 1015 s−1.

The other significant feature of Fig. 4 is that the
slight dependence of the Hamaker constant on the
crystal orientation of rutile has a trend opposite to that
determined through the full spectral method by French
et al. [8]. Thus, for example, they determine Hamaker
constants of 181.5 zJ for (100) rutile − vacuum − (100)
rutile, 177.2 kJ for (110) rutile − vacuum − (110) rutile
and 173.5 zJ for (001) rutile − vacuum − (001) rutile.
This feature is repeated for the rutile − silica − rutile
Hamaker constants shown in Fig. 5 − although the
values of 43.5-48.2 zJ agree very well with the spread
of values of 39.7-44.9 zJ obtained by French et al.

Fig. 2. Cauchy plots for the ordinary and extraordinary ray
directions of rutile in which n is the relevant refractive index and λ
is the wavelength in micrometres. The source data for the
refractive indices of the ordinary ray and the extraordinary ray as a
function of wavelength are from [13].

Fig. 3. Cauchy plot for vitreous silica. The source data for the
refractive index as a function of wavelength are from [14].

Table 1. Values of νUV, CUV and nvis0 for rutile and vitreous silica

νUV

× 1015 s−1 CUV nvis0

Rutile ordinary ray 1.227 4.845 2.418
Rutile extraordinary ray 1.182 6.108 2.666
Vitreous silica 3.211 1.098 1.448
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through the full spectral method, the trend as a function
of θ in Fig. 5 is opposite to that determined through the
full spectral method. A similar graph for Hamaker
constants for rutile − water − rutile at 300 K is shown
in Fig. 6. Here, the values of CUV and ωUV (= 2πνUV)
for water and its static dielectric constant of 79.69
quoted by Prieve and Russel [5] were used in the
calculations. The range of the values of A of 60-66 zJ
agree very well with other calculated values in the
range 53-77 zJ [6, 15, 16] using averaged dielectric
permittivity data and also with an experimental
measurement of A in the non-retarded limit of 60 ± 20
zJ at the isoelectronic point [16].

Although the dependencies of the calculated Hamaker
constants on crystal orientation determined through the
approach here and the full spectral approach of French
et al. [8] are slight, and certainly much less than the
range of absolute values of the Hamaker constants for
rutile − vacuum − rutile, rutile − silica − rutile and rutile
− water − rutile, more significant differences in predic-
tions between these two methods will arise in other
situations, such as where medium ‘3’ has a nvis0

intermediate between the extraordinary and ordinary

refractive indices of media ‘1’ and ‘2’ extrapolated to
zero frequency, for example. Under such circumstances
Parsegian and Weiss [9] have considered a different
geometrical situation to the one considered here.
Although the magnitudes of the anisotropic effects in
the situation considered by Parsegian and Weiss were
small, they depend critically on the relative orientations
between grains ‘1’ and ‘2’ around the z-axis. These
examples highlight the need for further work in this
area clarifying in detail the way anisotropy is treated in
the analytical approach, through full spectral calculations
and experimentally when extracting Hamaker constants
from surface force apparatus and atomic force micro-
scopy experiments.

Conclusions

The effect of crystal anisotropy, although very small
for most anisotropic materials, needs to be taken into
account when predicting Hamaker constants for situations
where materials with very high birefringence such as
rutile and hexagonal boron nitride are involved. While
these effects of anisotropy are modest even for rutile
grain boundaries containing thin films of intervening
fluid, and are likely to be less significant than differences
in the magnitudes of the Hamaker constants determined
using different computational approaches, such effects
need to be analysed and modelled to ensure that that
the reasons for differences which arise in predictions
using the various approaches are fully understood and
appreciated.
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Fig. 4. Plot of Hamaker constant, A, at 300 K as a function of
orientation for rutile − vacuum − rutile. The angle θ plotted on the
horizontal axis is the angle between the ‘c’ axis in each rutile grain
and the co-planar z-axis in the geometry of Fig. 1.

Fig. 5. Plot of Hamaker constant, A, at 300 K as a function of
orientation for rutile − silica − rutile. The angle θ plotted on the
horizontal axis is the angle between the ‘c’ axis in each rutile grain
and the co-planar z-axis in the geometry of Fig. 1.

Fig. 6. Plot of Hamaker constant, A, at 300 K as a function of
orientation for rutile − water − rutile. The angle θ plotted on the
horizontal axis is the angle between the ‘c’ axis in each rutile grain
and the co-planar z-axis in the geometry of Fig. 1. Water is
modelled as a material with a single zero-bandwidth absorption
peak together with a static dielectric constant using the material
parameters quoted by Prieve and Russel [5].
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