JOURNALOF

Ceramic Processing Research

Ultra-fast densification of highly transparent Y₂O₃ ceramic with La₂O₃ as sintering aid by spark plasma sintering

Cheol Woo Park, Jae Hwa Park, Hyo Sang Kang, Hee Ae Lee, Joo Hyung Lee, Jun Hyeong In and Kwang Bo Shim* *Division of Advanced Materials Science and Engineering, Hanyang University, Seoul 04763, Korea*

Highly transparent Y_2O_3 ceramics were produced using spark plasma sintering (SPS) at 1600 °C and 30 MPa for 5 min. When the SPS process was applied with various amounts of La_2O_3 as dopant. The specimen doped with 3 mol% La_2O_3 showed the highest density, and rapid particle growth and pore growth occurred, exhibiting that the relative density and average grain size are 99.2% and 17.2 µm, respectively. The specimen showed excellent transmittance of 79.44% in the visible light region (600 nm), resulting that La_2O_3 would be a useful dopant for improving the transmittance and mechanical properties of transparent Y_2O_3 ceramics produced with SPS.

Key words: Y2O3 Transparent ceramics, Spark plasma sintering, Densification, La2O3, Sintering aid.

Introduction

Transparent Y_2O_3 ceramics are being researched extensively as a promising material for optical applications. The advantages of Y_2O_3 are its high melting point (2430 °C), high corrosion resistance, thermal stability, and broad transparency [1-7]. Y_2O_3 is also known as the best material for infrared (IR) windows because it has a higher and wider range of transmittance than other typically used materials such as sapphire, AlON, YAG, MgAl₂O₄, etc. [8].

Transparent Y₂O₃ ceramics are generally produced with various sintering methods such as hot press [9], hot isostatic pressing [10, 11], and pressure-less sintering [12-14]. However, spark plasma sintering (SPS) allows the temperature to be controlled across a wide range, from low to high temperatures above 2000 °C within a short time and accelerates neck formation between powder particles owing to the generation of spark plasma. In addition, SPS also has grain surface purification, thermal diffusion, and electric field diffusion properties. As a result, SPS has the advantage of achieving full sintering within a very short time at a low temperature compared to conventional sintering methods [15-17]. The application of SPS to sinter oxides that contain ionic bonds is known to be likely to more easily generate the oxygen vacancies because of the effect of the spark plasma and electric field [18-20]. Furthermore, the SPS process is performed in a carbon-rich environment, and carbon is generated from the graphite die used as the heating element [21]. Consequently, the sintered oxide produced with SPS contains a high number of oxygen vacancies and high carbon content, both of which detrimentally affect the optical transparency.

Meanwhile, the sintering aid in the production of transparent ceramics is the most important factor that determines the transmittance and mechanical strength as these characteristics generally dominate the microstructure, and have been used to improve the optical quality and density of transparent ceramics. The following compounds have previously been used as sintering aids: ThO₂ [22], ZrO₂ [23], La₂O₃ [24], LiF [25], and HfO₂ [26]. Among them, the use of La_2O_3 in Y_2O_3 ceramics has the effect of increasing the grain boundary mobility [27]. Therefore, when sintering is performed under the same conditions, it induces grain growth and densification, and provides kinetics capable of eliminating micropores between grain boundaries. Furthermore, it is also suitable for the improvement of transmittance [28]. However, a large amount of sintering aid can change the stoichiometry of materials, form a second-order phase, and separate from the boundary, thereby negatively affecting the transparency [29].

The present study aims to develop a process to simply and rapidly produce Y_2O_3 ceramics with high density and optical quality using La_2O_3 as dopant while minimizing the number of oxygen vacancies that occur during the SPS process. We attempted to establish the optimal sintering conditions by using various amounts of La_2O_3 dopant during the SPS process and investigated the effects of La_2O_3 on the densification behaviour, microstructure, and mechanical and optical properties as a function of the concentration.

^{*}Corresponding author:

Tel:+82-2-2220-0501

Fax: +82-2-2291-7395

E-mail: kbshim@hanyang.ac.kr

384

Experimental

Powder preparation and SPS sintering

As starting materials, commercially available highly pure Y₂O₃ powder (99.99% pure, Cenotec, Korea) and La2O3 powder (99.9% pure, Kojundo, Japan) were used. The Y_2O_3 powder was doped with 0, 1, 3, and 5 mol% La₂O₃ and these mixtures were blended by ball milling with zirconia balls with a diameter of 1.5 mm in a weight ratio of 1:10. Then the blended powders were dried in an electric oven at 60 °C for 24 hrs. The dried powder samples were placed in a graphite die with an inner diameter of 15 mm that was wrapped with graphite foil and sintered using an SPS system (Sumitomo Coal Mining, S-515S, Japan) at 1600 °C under vacuum (10 Pa) at a, uniaxial pressure of 30 MPa. The sintering conditions were as follows: (i) the specimen was heated at a heating rate of 100 °C / min at room temperature until the final sintering temperature (1600 °C) was reached at which it was maintained for 5 min; (ii) the pressure was maintained at 30 MPa from the beginning; and (iii) after sintering, the pressure was released and the current was discontinued. The size of the sintered specimen was 15 mm in diameter and 1 mm in thickness. Subsequently, the specimen was subjected to an annealing process using a box furnace in an oxygen atmosphere at 1100 °C at a heating rate of 10 °C /min. The microstructure and optical properties were evaluated by grinding both surfaces of the specimen with a grinder, after which they were polished with a 1-µm diamond paste.

Characterization

X-ray diffraction analysis (XRD) was used to perform phase analysis with Cu Ka ($\lambda = 1.548$ Å) in the range of $2\theta = 20^{\circ}-80^{\circ}$ at 40 kV and 30 mA(Rigaku-denki, D/MAX-2500, Japan). The average grain size of the specimen was analysed using field emission-scanning electron microscopy (FE-SEM, NOVA Nano SEM 450, FEI, Czech Republic) in an acceleration voltage range of 5-15 kV. The in-line transmittance of the produced specimen was measured in the wavelength range of 300-2000 nm using a UV-Vis-NIR spectrophotometer (Lambda 950, Perkin-Elmer, America). The relative density was measured using the Archimedes method, and the average Vickers hardness was determined by 15 indentations using a digital hardness tester (FV-700e, Future-Tech Co. Ltd, Japan). The flexural strength was measured by 3-point bending with a mechanical tester (RB302, R&B Co. Ltd, Korea).

Results and Discussion

Fig. 1 shows the XRD patterns of the specimens of Y_2O_3 ceramics doped with various concentrations of La_2O_3 and sintered in vacuum at 1600 °C for 5 min.

Fig. 1. XRD patterns of Y_2O_3 ceramics doped with 0, 1, 3, 5 mol% La_2O_3 at 1600 °C for 10 min.

Fig. 2. Variation of transmittance and image of as-polished Y_2O_3 ceramics doped with 0, 1, 3, 5 mol% La₂O₃ at 1600 °C for 10 min.

None of the specimens showed a La₂O₃ phase or other impurities and the pattern coincided with the standard cubic Y₂O₃ phase with the space group of Ia⁻³. This indicates that La₂O₃ is dissolved in Y₂O₃ in the composition range of 1-5 mol% La2O3. Fig. 2 shows the in-line transmittance and image of an Y₂O₃ ceramic specimen, with a thickness of 1 mm, and doped with various concentrations of La2O3. As shown in this figure, every specimen clearly shows the text behind, but the un-doped specimen is less transparent than the other specimens doped with La₂O₃. The specimen doped with 1 mol% La₂O₃, showed a higher transmittance than the un-doped specimen. The specimens doped with 3 mol% or higher amounts of La₂O₃ showed very high transmittances. The specimen doped with 3 mol% La₂O₃, showed an excellent transmittance of 79.44% at a wavelength of 600 nm. Thus, the specimens doped with La_2O_3 have higher transmittances than pure Y_2O_3 ceramics. This is because the specimens doped with La₂O₃ have larger or a greater number of micropores and higher scattering is activated when the light passes

Fig. 3. FE-SEM image of thermally etched Y₂O₃ ceramics surface doped with (a)0, (b)1, (c)3, (d)5 mol% La₂O₃ at 1600 °C for 10 min.

Fig. 4. TEM images of Y_2O_3 sample (a) un-doped and (b) doped with 3 mol% La_2O_3 showing the presence of occluded nanopores and the straight grain boundary at the triple junction.

through the ceramics in the nanometre range, compared to the un-doped specimen [24].

Fig. 3 shows the etched surfaces of the Y_2O_3

specimens doped with different concentrations of La_2O_3 . In general, the grain size gradually increased as the amount of dopant, La_2O_3 , increased. The specimens

Fig. 5. Variation of the average grain size and relative density of SPS-sintered Y_2O_3 ceramics doped with 0, 1, 3, 5 mol% La₂O₃ at 1600 °C for 10 min.

doped with 0 mol% and 1 mol% La₂O₃ did not show significant differences in grain size, but the specimen doped with 1 mol% La₂O₃ contained fewer micropores. The specimen doped with 3 mol% La₂O₃ had a greater grain size than those doped with 0 mol% and 1 mol% La₂O₃, and showed a dense, uniform microstructure with almost no inter-granular and intra-granular pores. Moreover, grains with abnormal grain growth were not observed, which suggests that densification progressed in a thermodynamically stable manner. However, the grain size of the specimen doped with 5 mol% La₂O₃ was less uniform compared to that doped with 3 mol% La₂O₃, and the presence of micropores was observed. As a result, light scattering and absorption occurred, and transmittance decreased in specimens with residual micropores. The cause of the low transmittance and light scattering of specimens may be the prevalence of micro-sized and smaller residual pores [29]. The application of SPS in the sintering of oxides with ionic bonds is likely to cause fine oxygen vacancies due to the effects of the spark plasma and electric field.

Fig. 4 shows the TEM images of an undoped specimen and a specimen doped with $3 \text{ mol}\% \text{ La}_2\text{O}_3$ taken to analyse the effects of La_2O_3 . The residual occluded nanopores at the triple junction of the specimen doped with $0 \text{ mol}\% \text{ La}_2\text{O}_3$ are indicated by white arrows (Fig. 4(a)). The presence of occluded nanopores sized approximately 65 nm and 9.38 nm can be seen on the left and the right, respectively. In contrast, the specimen doped with 3 mol

% La₂O₃, exhibits clean grain boundaries with no occluded pores at the triple junction as shown in Fig. 4(b). The reason for this seems to be that in the final stage of the sintering process, the La³⁺ ions accelerated mass transfer, which increased the diffusion of Y^{3+} ions and grain boundary mobility, thereby providing kinetics that can destroy oxygen vacancies and pores through grain growth and densification [28]. Consequently, the addition of La₂O₃ during the sintering of Y₂O₃ using

Fig. 6. Hardness of SPS-sintered Y_2O_3 ceramics doped with 0, 1, 3, 5 mol% % La₂O₃ at 1600 °C for 10 min.

Fig. 7. Variation in the flexural strength of the SPS-sintered Y_2O_3 ceramics doped with 0, 1, 3, 5 mol% La₂O₃ at 1600 °C for 10 min.

SPS decreases the extent of light scattering and absorption to improve the in-line transmittance of ceramics.

Fig. 6 shows the hardness (GPa) of Y₂O₃ ceramics as a function of different concentrations of La₂O₃ dopant. The increasing porosity and decreasing hardness of Y₂O₃ ceramics have been reported by various researchers [29-31]. Y_2O_3 ceramics doped with La₂O₃ have higher hardness values than pure specimens with no La₂O₃. As the concentration of La₂O₃ increased from 0 mol% to 3 mol%, the hardness increased from 8.09 GPa to 8.45 GPa. The hardness of ceramics generally increases when the particle size is reduced, but in this study, the hardness value is relatively high even though the particle size increased by the addition of La₂O₃. This is attributed the mechanical properties of the undoped specimen, which has a greater number of pores and lower relative density than the specimens doped with La_2O_3 . On the other hand, at the concentration of La_2O_3 of 5 mol%, the number of nanopores increased and the

density decreased to 98.9%, and as a result, the hardness decreased to 8.22 GPa.

A comparison of Fig. 5 and Fig. 7 shows that the trend exhibited by the flexural strength is almost identical to that of the relative density. In general, the strength of ceramics depends on their porosity and an increase in the porosity is known to increase the stress concentration [32]. Consequently, the decrease in strength is accompanied by a concomitant increase in the stress concentration of the sample. As the added amount of sintering aid increased, the flexural strength increased from 98.9 MPa to the maximum strength of 120 MPa at 3 mol% La₂O₃. The strength of the specimen doped with 5 mol% La₂O₃ showed a decreasing trend to 104 MPa as the particle size increased and the density decreased.

Conclusions

Transparent Y₂O₃ ceramics were successfully produced using SPS at 1600 °C and 30 MPa for 10 min using commercially available Y₂O₃ powder. The addition of La2O3 during SPS process had a significant effect on the production of transparent Y₂O₃ ceramics. The addition of La₂O₃ greatly decreased the number of micropores and vacancies because of grain growth and densification, and generated a dense microstructure. The evaluation results showed that the optimal concentration of La₂O₃ doping was 3 mol% and the 1 mm-thick specimen showed high transmittance of 79.44% at a wavelength of 600 nm. The average grain size in this case was 17.2 µm and the specimen showed a high relative density of 99.2%. As this specimen had higher relative density and lower porosity than the specimen produced with no sintering aid, its mechanical properties, i.e. its hardness and flexural strength, improved to 8.45 GPa and 120 MPa, respectively.

References

- J.R. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, Jpn. J. Appl. Phys. Part 2-Letters 41 (2002) L1373.
- M. Ivanov, Y. Kopylov, V. Kravchenko, L. Jiang, A. Medvedev, PAN Yubai, J. Rare. Earths 32 (2014) 254.
- W.J. Tropf, M.E. Thomas, R.K. Frazer, SPIE 5078 (2003) 80-89.
- 4. S.F. Wang, J. Zhang, D.W. Luo, et al., Prog. Solid State

Chem. 41 [1-2] (2013) 20-54.

- P. Hogan, T. Stefanil, C. Willingham, R. Gentilman, 10th DoD Electromagnetic Windows Symposium (2004).
- L. An, A. Ito, T. Goto, J. Eur. Ceram. Soc. 32 (2012) 1035-1040.
- 7. K. Serivalsatit, B. Kokuoz, B. Yazgan-Kokuoz, M. Kennedy, J. Ballatow, J. Am. Ceram. Soc. 93 (2010) 1320.
- 8. C.B. Willingham et al., SPIE Proc. 5078 (2003) 179.
- S.R. Podowitz, R. Gaumé, R.S. Feigelson, J. Am. Ceram. Soc. 93 (2010) 82-88.
- J. Wang, J. Ma, J. Zhang, P. Liu, D. Luo, D. Yin, D. Tang, L.B. Kong, Opt. Mater. 71 (2017) 117-120.
- J. Mouzon, A. Maitre, L. Frisk, N. Lehto, M. Odén, J. Eur. Ceram. Soc. 29 (2009) 311-316.
- T. Ikegami, J.G. Ji, T. Mori, Y. Moriyoshi, J. Am. Ceram. Soc. 85 (2002) 1725-1729.
- L.L. Jin, G.H. Zhou, S. Shimai, J. Zhang, S.W. Wang, J. Eur. Ceram. Soc. 30 (2010) 2139-2143.
- 14. Y.H. Huang, D.L. Jiang, J.X. Zhang, Q.L. Lin, J. Am. Ceram. Soc. 92 (2009) 2883-7.
- 15. K.H. Kim, J.H. Chae, J.S. Park, J.P. Ahna, K.B. Shim, J. Ceram. Proc. Res. 10 (2009) 716-720.
- 16. K.H. Kim, K.B. Shim, Mater. Charact. 50 (2003) 31-37.
- S.H. Shim, J.W. Yoon, K.B. Shim, J. Matsushita, B. S. Hyun, S.G. Kang, J. Alloy. Compd. 413 (2006) 188-192.
- J.R. Groza, A. Zavaliangos, Mater. Sci. Eng. A287 (2000) 171-177.
- M. Omori, T. Isobe, T. Hirai, J. Am. Ceram. Soc. 83 (2000) 2878-2880.
- L. Gao, Z. Shen, H. Miyamoto, M. Nygren, J. Am. Ceram. Soc. 82 (1999) 1061.
- 21. C.W. Park, J.H. Lee, S.H. Kang, J.H. Park, H.M. Kim, H.S. Kang, H.A. Lee, J.H. Lee, K.B. Shim, J. Ceram. Proc. Res. 18 (2017) 183-187.
- 22. C. Greskovich, K.N. Woods, J. Am. Ceram. Soc. Bull. 52 (1973) 473.
- 23. X.R. Hou, S.M. Zhou, Y.K. Li, W.J. Li, Opt. Mater. 32 (2010) 920-923.
- 24. K. Majima, N. Niimi, M. Watanabe, S. Katsuyama, H. Nagai, J. Jpn. Inst. Met. 57 (1993) 1221-1226.
- 25. Ikesue, K. Kamata, K. Yoshida, J. Am. Ceram. Soc. 79 (1996) 359-364.
- 26. X. Li, X. Mao, M. Feng, S. Qi, B. Jiang, L. Zhang, J. Eur. Ceram. Soc. 36 (2016) 2549-2553.
- 27. Q. Yi, S. Zhou, H. Teng, H. Lin, X. Hou, T. Ji, J. Eur. Ceram. Soc. 32 (2012) 381-388.
- L. Zhang, Z. Huang, W. Pan, J. Am. Ceram. Soc. 98 (2015) 824-828.
- 29. R.W. Rice, J. Mater. Sci. 31 (1996) 1969-1983.
- 30. F.P. Knudsen, J. Am. Ceram. Soc. 42 (1959) 367-387.
- 31. R.W. Rice, J. Mater. Sci. 28 (1993) 2187-2190.
- B. Ahmadi, S.R. Reza, M.A. Vadeqani, M. Barekat, Ceram. Int. 42 (2016) 17081-17088.