JOURNALOF

Ceramic Processing Research

# Phase evolution, microstructure, and microwave dielectric properties of Zn<sub>2-2x</sub>Si<sub>1+x</sub>O<sub>4</sub>

Sang-Ok Yoon<sup>a</sup>, Shin Kim<sup>b</sup>, Yun-Han Kim<sup>a</sup>, So-Jung Kim<sup>c</sup> and Seong-Min Jeong<sup>d,\*</sup>

<sup>a</sup>Department of Materials Engineering, Graduate School, Gangneung-Wonju National University, Gangneung 210-702, Korea <sup>b</sup>Hasla Co., Ltd, Gangneung 210-340, Korea

<sup>c</sup>Department of Electrical and Electronic Engineering, Hanzhong University, Donghae 240-713, Korea

<sup>d</sup>Energy & Environmental Division, Korea Institute of Ceramic Engineering and Technology(KICET), Jinju 606-031, Korea

Phase evolution, microstructure, and dielectric properties of zinc orthosilicate,  $Zn_{2.2x}Si_{1+x}O_4$ , sintered at 1350 °C were investigated. All sintered specimen in the composition of  $0 \le x \le 0.1$  showed dense microstructures. For the specimen of x = 0, low quality factor was obtained due to the insufficient grain growth. The grain boundaries in the specimens of  $x \ge 0.05$  were observed clear, which indicates that the grain growths in these compositions were well developed. From these results, the composition of the synthesized zinc orthosilicate was assumed to be  $x = \sim 0.02$ ,  $Zn_{1.96}Si_{1.02}O_4$ , where Zn/Si is 1.922. The dark-colored grains having 0.52 of Zn/Si ratio were assumed to be the liquid phase in the sintering which promoted the liquid phase sintering. The specimens of x = 0.05,  $Zn_{1.9}Si_{1.05}O_4$ , exhibited improved microwave dielectric characteristic of 6.27 in the dielectric constant and 104,323 GHz in the quality factor. The value of the quality factor for  $Zn_{1.9}Si_{1.05}O_4$  was much higher than other specimens with different compositions, probably due to the effect of the grain boundaries.

Key words: Zinc orthosilicate, Grain growth, Liquid phase sintering, Dielectric constant, Quality factor.

## Introduction

Zinc orthosilicate  $(Zn_2SiO_4)$  with the mineralogical name of willemite has been reported as the only stable compound in the ZnO-SiO<sub>2</sub> binary system and applied as phosphor hosts [1, 2]. Zn<sub>2</sub>SiO<sub>4</sub> belongs to a phenacite (beryllium silicate) structure, a rhombohedral one where all cations are tetrahedrally coordinated with oxygen ions and each oxygen is bonded to three tetrahedral cations, i.e. two divalent and one tetravalent, resulting in a much more rigid tetrahedral network [3]. Recently, Zn<sub>2</sub>SiO<sub>4</sub> has been reported as one of the low-loss dielectric materials in the microwave band [4,5]; Zn<sub>2</sub>SiO<sub>4</sub> synthesized by a conventional solid-state reaction exhibited an extremely high quality factor  $(Q \times f)$  of 219,000 GHz and a low dielectric constant of 6.6 when it was sintered at 1340 °C after calcination at 1150 °C and cold-isostatic pressing and Zn<sub>2</sub>SiO<sub>4</sub> prepared through a sol-gel process also exhibited a high quality factor of 198,400 GHz, indicating that Zn<sub>2</sub>SiO<sub>4</sub> is a candidate material for millimeter-wave communication with ultra-high Q and low dielectric constant. The high Q of Zn<sub>2</sub>SiO<sub>4</sub> may be related to the rigid network. Microwave and millimeter-wave dielectric ceramics can be used for a wide range of applications in telecommunication, such as cellular phone, wireless network, global position satellite (GPS), military radar system, intelligent transport system (ITS), and direct broadcast satellite [6].

Nguyen et al. reported that the stoichiometric  $Zn_2SiO_4$  synthesized by a solid-state method exhibited a relatively low quality factor due to the formation of the secondary phase (ZnO) and the ZnO-deficient  $Zn_2SiO_4$ , particularly  $Zn_{1.8}SiO_{3.8}$  composition, had a large grain and exhibited an improved quality factor of 147,000 GHz.<sup>7</sup> In this work, by substituting two Zn with one Si for the charge compensation, a series of zinc orthosilicate with deficient Zn-site and excess Sisite were synthesized and their characteristics were analyzed.

#### **Experimental procedure**

 $Zn_{2-2x}Si_{1+x}O_4$  ( $0 \le x \le 0.1$ ) were synthesized through a conventional solid-state reaction. ZnO (purity 99.9%, High Purity Chemicals Co. Ltd, Japan) and SiO<sub>2</sub> with a quartz form (purity 99.9%, High Purity Chemicals Co. Ltd, Japan) were used as starting powders. The compositions of x = 0, 0.02, 0.05, 0.08, and 0.1 were prepared. The proper ratio of starting powders was ball-milled by ZrO<sub>2</sub> balls under ethanol medium in a polyethylene-based container for 24 hrs. After drying in an oven, the powder mixture was calcined at 1150 °C for 10 hrs using an alumina crucible. The disktype specimens were obtained by a sintering process at 1350 °C for 2 hrs after a uniaxial pressing at 50 MPa. The crystalline phases of the sintered specimen were identified by a powder X-ray diffractometer (D/MAX-2500V/PC, Rigaku, Japan) using pulverized powder. The microstructure of the sintered specimen was characterized by a field emission scanning electron

<sup>\*</sup>Corresponding author:

Tel:+82-55-792-2570

Fax: +82-55-792-2580

E-mail: smjeong@kicet.re.kr

microscope (FE-SEM, S-4200, Hitachi, Japan) after a thermal etching at 1250 °C. The compositional analysis was performed by an energy dispersive spectroscopy (EDS, 7200-H, Horiba, Japan). The bulk density of the sintered specimens was measured by the Archimedes method. The microwave dielectric properties of the disk-type specimens were measured by a network analyzer (HP8720ES, Agilent, USA) using a Hakki-Coleman fixture configuration.

### **Results and Discussion**

Figs. 1(a-e) show the powder X-ray diffraction patterns of  $Zn_{2-2x}Si_{1+x}O_4$  ( $0 \le x \le 0.1$ ) sintered at 1350 °C. Zinc orthosilicate with a rhombohedral structure (ICDD file number 70-1235) is identified as the main phase in the all compositions. A small quantity of ZnO (ICDD file number 36-1451) marked by a diamond symbol in Fig. 1(a)  $(2\theta \approx 36.2^{\circ})$  is observed in the specimen of x = 0whereas it disappears in the specimens of  $x \ge 0.02$ . The residual ZnO in the Zn<sub>2</sub>SiO<sub>4</sub> composition was observed in the ZnO-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> at 950 °C by Eldem et al. [2]. The existence of ZnO in this composition is also supported by the experimental findings of Nguyen et al [7]. In the specimen of x = 0.02, unidentified peak with a broad shape marked by a square symbol in Fig. 1(b) appears about  $35.6 \sim 36.0^{\circ}$ . SiO<sub>2</sub> with a low-quartz form (ICDD file number 46-1045) is observed in the specimens of x  $\geq 0.05$  (marked by inverted triangles in Figs. 1(c-e)). From the results that (1) ZnO as the secondary phase is



**Fig. 1.** Powder XRD patterns of  $Zn_{2-2x}Si_{1+x}O_4$  sintered at 1350 °C; (a) x = 0, (b) 0.02, (c) 0.05, (d) 0.08, and (e) 0.10 (diamond, square, and inverted triangle symbols are ZnO, unidentified phase, and SiO<sub>2</sub> with a low-quartz form, respectively).



**Fig. 2.** FE-SEM images of  $Zn_{2-2x}Si_{1+x}O_4$  sintered at 1350 °C; (a) x = 0, (b) 0.05, (c) 0.08, and (d) 0.10.



Fig. 3. The EDS results for the specimen of x = 0.05; (a) matrix and (b) dark-colored grain.

detected in the specimen of x = 0 and it disappears in the specimens of  $x \ge 0.02$  and (2) the low-quartz form as another secondary phase is observed in the specimens of  $x \ge 0.05$ , the composition of the synthesized zinc orthosilicate is assumed to be  $x = \sim 0.02$ ,  $Zn_{1.96}Si_{1.02}O_4$ , where Zn/Si is 1.922.

The surface morphology of the specimens sintered at 1350 °C for 2 hrs is observed by the secondary electron (SE) mode of FE-SEM. The FE-SEM images of the specimens for  $Zn_{2-2x}Si_{1+x}O_4$  (x = 0, 0.05, 0.08, and 0.1) in Fig. 2 show dense microstructures with the absence of pores except some pin holes. The grain boundary for the specimen of x = 0 (Fig. 2(a)) is observed unclearly, implying that the grain growth may be insufficient. For the specimens of  $x \ge 0.05$ , however, the grain boundary is clearly observed although the specimens have different grain sizes. Grains with sizes of  $0.5 \sim 3 \mu m$  are generally observed in the specimens of x = 0.05 and 0.08, whereas abnormally grown grains mixed with very small grains are frequently observed in the specimen of x = 0.1, as represented as the ellipse of Fig. 2(d).

In addition, dark-colored grains marked by arrows in Figs. 2(b-d) are detected for the specimens of  $x \ge 0.05$  whereas those are not observed for the specimen of x = 0. In the SE mode of FE-SEM, the dark color indicates that grains are composed of lighter elements. Because cations other than zinc and silicon are not included in this work, therefore, dark-colored grains may contain

more silicon which is lighter than zinc. As shown in Fig. 3, the EDS results for the specimen of x = 0.05support the suggestion; the ratio of Zn/Si at the spot marked by small cross in the grain (Fig. 3(a)) is 1.84 whereas it in the dark-colored grain is 0.52, i.e. SiO<sub>2</sub>rich composition (Fig. 3(b)). Because any secondary crystalline phases except a little amount of low-quartz are not observed in the composition of x 0.05 as shown in Fig. 1, the dark-colored grains are assumed to exist as glassy phases at the room temperature. Therefore, this phase should be in the liquid state at the sintering temperature of 1350 °C which promote the liquid phase sintering. The creation of the low-quartz may be caused by the precipitation from the SiO<sub>2</sub>-rich liquid during the cooling process. Therefore the grain growth in the specimens of  $x \ge 0.05$  and the large grains in the specimen of x = 0.1 may be related to the presence of the liquid phase. The insufficient grain growth in the specimen of x = 0 could be explained by the lack of the liquid phase; the dark-colored grains in this composition are not observed as mentioned above.

The presence of the liquid phase in zinc orthosilicate sintered at 1300°C has been reported by Nguyen et al. [7]. It is interesting to note that two eutectic temperatures in the ZnO-SiO<sub>2</sub> binary system have been reported as 1507 °C and 1432 °C [8], indicating that a liquid in this system could form at least above 1432 °C which is higher than the sintering temperatures of this work and Nguyen's work. From the reinvestigation of the phase equilibria in the ZnO-SiO<sub>2</sub> system, Hansson et al. have suggested that the eutectic temperature between zincite (ZnO) and  $Zn_2SiO_4$  exists at 1505 ± 5 °C and that between  $Zn_2SiO_4$  and tridymite (SiO<sub>2</sub>) exists at  $1448 \pm 5$  °C [9]. In the study about ZnGa<sub>2</sub>O<sub>4</sub> spinel ceramics, Xue et al. suggested that Zn element volatilized at high temperatures (above 1360 °C) and captured by ZnGa<sub>2</sub>O<sub>4</sub> to form Zn liquid droplets, which functioned as catalysts during the growth process [10]. Further study for the formation of the liquid phase in the above binary system is necessary.

Figs. 4 and 5 represent linear shrinkage, bulk density, dielectric constant, and quality factor  $(Q \times f)$  of  $Zn_{2-2x}$  $Si_{1+x}O_4$  sintered at 1350 °C. The linear shrinkage of the specimen of x = 0.05, i.e.  $Zn_{1,9}Si_{1,05}O_4$ , is 19.73% whereas that of x = 0 is 17.13%, implying that the liquid phase enhances the sinterability of  $Zn_{2-2x}Si_{1+x}O_4$ . The bulk density apparently increases with increasing x to a maximum value at x = 0.05 and then declined thereafter; the bulk density of x = 0.05 is 4.034 g/cm<sup>3</sup>, 95% of the theoretical density for  $Zn_2SiO_4$  (4.25 g/cm<sup>3</sup>) [11]. The decrease of the bulk density after the maximum value is assumed to be related to a large quantity of SiO<sub>2</sub>. The dielectric constant against the sintering temperature represents a similar tendency with the bulk density; as increasing x, the dielectric constant increases until x = 0.05 and then decreases. The value of the dielectric constant for x = 0.05 is 6.27 which is lower than that of



Fig. 4. Linear shrinkage and bulk density of  $Zn_{2\text{-}2v}Si_{1+x}O_4$  sintered at 1350 °C.



Fig. 5. Dielectric constant and quality factor (Q\*f) of  $Zn_{2-2x}Si_{1+x}O_4$  sintered at 1350 °C.

Zn<sub>2</sub>SiO<sub>4</sub> (6.6). It is considered that the presence of the glassy phase results in the relatively low dielectric constant in this work. The value of the quality factor for Zn<sub>1.9</sub>Si<sub>1.05</sub>O<sub>4</sub> is 104,323 GHz whereas that of x = 0 is as low as 24,959 GHz, probably due to the insufficient grain growth, i.e. a large quantity of the grain boundary as shown in Fig. 2(a). The relatively low value for x = 0.1 (72,889 GHz) may also be explained by the term of the large grain-size distribution as shown in Fig. 2(d).

### Conclusions

Phase evolution, microstructure, and dielectric properties of zinc orthosilicate,  $Zn_{2-2x}Si_{1+x}O_4$ , sintered at 1350 °C for 2 hrs were investigated. The composition of the synthesized zinc orthosilicate is assumed to be close to x = 0.02,  $Zn_{1.96}Si_{1.02}O_4$ . Microstructure analysis using FE-SEM showed that the SiO<sub>2</sub>-rich liquid phase enhanced the grain growth of the sintered body via liquid phase sintering. The composition of x = 0.05, i.e.  $Zn_{1.9}Si_{1.05}O_4$ , showed best microwave dielectric properties of 6.27 with the dielectric constant and 104,323 GHz with the quality factor in the given compositions.

#### References

- 1. M. Takesue, H. Hayashi, and R.L. Smith Jr., Prog. Cryst. Growth Ch. 55 (2009) 98-124.
- 2. M.A. Eldem, B.R. Orton, and A. Whitaker, J. Mater. Sci. 22 (1987) 4139-4143.
- 3. J.R. Smith, S.D. Jacobsen, and R.M. Hazen, Rev. Mineral. Geochem. 41 (2000) 187-209.
- 4. Y. Guo, H. Ohsato, and K.-I. Kakimoto, J. Eur. Ceram. Soc. 26 (2006) 1827-1830.

- M. Dong, Z. Yue, H. Zhuang, S. Meng, and L. Li, J. Am. Ceram. Soc. 91 (2008) 3981-3985.
- 6. S.B. Narang and S. Bahel, J. Ceram. Process Res. 11 (2010) 316-321.
- N.H. Nguyen, J.B. Lim, S. Nahm, J.H. Paik, and J.H. Kim, J. Am. Ceram. Soc. 90 (2007) 3127-3130.
- E.M. Levin, C.R. Robbins, H.F. McMurdie, M.K. Reser, Phase Diagrams for Ceramists, Revised edn. (The American Ceramic Society, 1964), Figure No. 302.
- R. Hansson, B. Zhao, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B 36B 187-193 (2005).
- 10. J. Xue, S. Wu, and J. Li, J. Am. Ceram. Soc. 96 (2013) 2481-2485.
- 11. J.-L. Zou, Q.-L. Zhang, H. Yang, and H.-P. Sun, Jpn. J. Appl. Phys. 45 (2006) 4143-4145.