JOURNALOF

Ceramic Processing Research

Improving rate capabilities of hybrid supercapacitor using Li₄Ti_{5-x}Zr_xO₁₂/activated carbon

Seung-Hwan Lee^a, Tae-Hoon Jeoung^b, Sung-Pill Nam^b and In-Ho Im^{c,*}

^aCenter for Advanced Life Cycle Engineering, University of Maryland, Room 1103, Building 89, College Park, MD, USA ^bAdvanced Power Grid Research Division, Korea Electrotechnology Research Institute ^cDept. of Electrical Engineering, Shin Ansan University

The $Li_4Ti_{5-x}Zr_xO_{12}$ (x = 0, 0.15, 0.3, 0.45 and 0.6) anodes were prepared using a simple solid-state method. We investigated the electrochemical performance of hybrid supercapacitor using Zr^{4+} doped $Li_4Ti_5O_{12}$ anode and activated carbon cathode. When Zr entered $Li_4Ti_5O_{12}$, the higher lattice parameters and conductivities of $Li_4Ti_{5-x}Zr_xO_{12}$ (x = 0.15, 0.3, and 0.45) obviously improved the electrochemical performance of hybrid supercapacitor. Among them, the $Li_4Ti_{5-x}Zr_xO_{12}$ anode has a superior specific capacitance of 69 Fg⁻¹ at 0.5 Ag⁻¹ rates. Also, the power and energy densities were 212.3 W kg⁻¹ and 65.2 Wh kg⁻¹, respectively.

Key words: Hybrid supercapacitor, Li₄Ti₅O₁₂, Zr Doping, Power and energy densities.

Introduction

Recently, all over the world, the demand of the environment friendly policy and the renewable energy are growing. Therefore, the development necessity of the next generation energy storage device has increased. The supercapacitor is the one of a variety of the energy storage devices. The supercapacitor is charged and discharged when ions are an adsorptiondesorption on the surface of electrode material. The supercapacitor has high power density $(10^3-10^4 \text{ Wkg}^{-1})$, the fast charge-discharge rate and the long cycle life [1-3]. However, the supercapacitor has relatively low energy density [4, 5]. The energy device of other types, lithium ion batteries (LIBs) stored an energy when lithium ions are inserted-extracted. Lithium ion batteries with a high energy density (150-200 Wh kg⁻¹) [6], have used with power sources such as mobile phone, PC and digital camera over the last decade. Lately, it has been expanded for applications in hybrid electrical vehicles and an electrical vehicles. However, the safety, cycle performance and power density of the present are not perfect yet [7, 8]. In order to overcome some of the problems, recently, a new energy device called the hybrid supercapacitor has been attracting attention. Hybrid supercapacitors are energy storage devices which combine the advantages of the lithium ion batteries and the supercapacitors [6, 9]. It is composed of the electrode materials of the anode and cathode used in the lithium ion batteries and the

supercapacitors, respectively. Hybrid supercapacitor shows the high power density at cathode during an adsorption-desorption process by the electric double layer reaction. Another electrode implemented the higher capacity when lithium ions are insertedextracted into the interior of the anode. Therefore, hybrid supercapacitors have advantages such as the high energy density, the superior power density, long cycle life [10]. Hybrid supercapacitor is fabricated in a variety of ways anode hybrid or cathode hybrid and materials [11-16]. Among the various materials, spinel L4iTi5O12 (hereafter LTO) is attracted attention and mainly applied in the anode material. The L₄iTi₅O₁₂ is well known to have zero-strain in unit cell volume during the intercalation/deintercalation of Li⁺ ion [15]. Also, electrochemical theoretical capacity of L₄iTi₅O₁₂ is 175 mAh/g⁻¹, and Spinel $L_4iTi_5O_{12}$ can prevent the form a solid electrolyte interface (SEI) [17] because it has a flat Li insertion potential at about 1.55 V (versus Li^+/Li) [13, 17, 18]. However, the slow Li^+ ion diffusion coefficient ($< 10^{-12} \text{ cm}^2 \text{ s}^{-1}$) [19] and poor electron conductivity $(2.65 \times 10^{-7} \text{ S cm}^{-1})$ [14] of L4iTi5O12 are limited to a variety applications. To improve the disadvantages of the Li₄Ti₅O₁₂, various methods have been investigated such as doping with metal ions (Zr⁴⁺ [19-21], Zn²⁺ [22], Al³⁺ [21], La³⁺ [23], Ta⁵⁺ [24], Cr³⁺ [25], Ni³⁺ [25], Na⁺ [26], V⁵⁺ [27], Mg^{2+} [28], Nb^{5+} [29], Mo^{4+} [30], and Mo^{6+} [30]) or non-metal ions (F⁻ [31] and Br⁻ [32]), synthesizing nano-sized particles, coating carbon on the surface of the particles, and mixing carbon with the particles [16]. Among these methods, $Li_4Ti_5O_{12}$ with dopants such as Zr^{4+} , Zn^{2+} , Mg^{2+} , Al^{3+} , Ni^{3+} on the Ti^{4+} sites can increase in the amount of Ti3+/Ti4+ mixing through

^{*}Corresponding author:

Fax: +82-31-490-6055

E-mail: iminho@sau.ac.kr

Fig. 1. (a) XRD patterns of the $Li_4Ti_{5-x}Zr_xO_{12}$ ($0 \le x \le 0.6$) powders. (b) Enlarged XRD patterns between 17 and 20 degrees.

Table 1. Lattice parameter of the $Li_4Ti_{5-x}Zr_xO_{12}$ ($0 \le x \le 0.6$) anode materials.

Compounds	Lattice parameter (Å)
Li ₄ Ti _{4.4} Zr _{0.6} O ₁₂	8.37327
Li ₄ Ti _{4.55} Zr _{0.45} O ₁₂	8.38688
Li ₄ Ti _{4.7} Zr _{0.3} O ₁₂	8.34189
Li ₄ Ti _{4.85} Zr _{0.15} O ₁₂	8.31035
$Li_4Ti_5O_{12}$	8.29699

charge compensation. Therefore, electronic conductivity is increased [20]. In addition, Yi *et al.* [19] reported that Zr^{4+} doping can be improved the rate ability and cycling stability of L₄iTi₅O₁₂ due to the reduction of charge transfer resistance and increased lithium diffusivity. Also, the surface area is increased with reducing the particles size by doping system [20], which lead to fast Li⁺ ion diffusion due to shorter diffusion [19, 20, 33-36]. In this paper, we assembled the cylindrical type hybrid supercapacitor using Zr^{4+} doped Li₄Ti₅O₁₂ and activated carbon as anode and cathode, respectively, and investigated the effect for different Zr^{4+} -doping content on the structural properties and electrochemical performance of hybrid supercapacitor.

Experiments

Spinel-Li₄Ti_{5-x}Zr_xO₁₂ ($0 \le x \le 0.6$) samples were fabricated using solid-state methods with Li₂CO₃ (Junsei, 99%), TiO₂ (Junsei, 99%), and ZrO₂ (Fluka, 99%) as raw materials. The powders were mixed in ethyl alcohol for 24h in a ball mill and calcined at 800°C for 6h in air. We used X-ray diffraction (XRD) to analyze the crystallinity. The anode of the hybrid capacitor was composed of Li₄Ti_{5-x}Zr_xO₁₂, conductive carbon black binder (Super P), and polyvinylidene fluoride (PVDF) in the weight ratio 83 : 7 : 10. N-Methyl pyrrolidinine (NMP) as a solvent was coated on aluminum foil to a thickness of 125 µm using a bar coater and then dried at 100 °C to remove the NMP solvent. The material was then pressed to a thickness of 70-80 µm. The width of the cathode, separator, and anode were 28 cm, 40 cm, and 30 cm, respectively and the height of the cathode and anode were both 3 cm. The prepared electrodes and separator were assembled into a cylindrical cell (outer diameter of 2 cm × height of 4.5 cm) in an argon-gas-filled glove box. Before being impregnated with a 1.5M solution of LiBF₄ as the electrolyte, the cell was dried in a vacuum oven for 48 h to get rid of the moisture. The galvanostatic chargedischarge tests (initial capacitance, rate capability) were carried out using Arbin BT 2042 battery test system at various current densities with a cut off voltage of 0-2.8 V. The electrochemical impedance spectroscopy (EIS) was done in the frequency range of 10^{-1} to 10^{-6} Hz.

Results and Discussion

Fig. 1 (a) show the x-ray diffraction patterns of the $Li_4Ti_{5-x}Zr_xO_{12}$ ($0 \le x \le 0.6$). All main peaks of $Li_4Ti_{5-x}Zr_xO_{12}$ _xZr_xO₁₂ are similar to the cubic spinel structure with Fd3m space group of pristine Li₄Ti₅O₁₂ (PDF No, 49-0207). The x-ray diffraction patterns of the Li_4Ti_{5-} $_{x}Zr_{x}O_{12}$ ($0 \le x \le 0.45$) were not observed the secondary phases because the Zr⁴⁺ is successfully substituted into the lattice of the pristine Li₄Ti₅O₁₂. On the contrary, Li₄Ti_{4.4}Zr_{0.6}O₁₂ was observed the secondary phases by excessive Zr^{4+} contents of 0.6 mol %. Fig. 1 (b) shows the (111) planes of the $Li_4Ti_{5-x}Zr_xO_{12}$ below X = 0.6. The peaks of the samples shifted toward lower degrees with increasing of Zr^{4+} dopant. This indicates that the lattice parameter of the $Li_4Ti_5O_{12}$ is increased when the Ti^{4+} (0.605 Å) is substituted by Zr^{4+} (0.80Å) with the larger radius than that of Ti4+, as calculated using Bragg's equation (1). Bragg's equation is used to calculate the plane spacing 'd' of $Li_4Ti_{5-x}Zr_xO_{12}$ ($0 \le x$ ≤ 0.6) as follows [37]:

$$2d\,\sin\theta = n\lambda\tag{1}$$

The lattice parameter '*a*' for the cubic structure of $Li_4Ti_{5-x}Zr_xO_{12}$ ($0 \le x \le 0.6$) was calculated using the following equation:

$$a = \sqrt{h^2 + k^2 + 1^2} \tag{2}$$

Here, 'd' is the spacing between the planes in the atomic lattice. 'h', 'k', and 'l' are miller indices of the crystal planes [38]. The lattice parameter of high angle reflection is dependable, while value slightly varies depending on different orientation of samples, caused by diffusion and absorption of the X-ray beams' refraction from the samples [38]. The corrected lattice parameter can be obtained to reduce errors of measured ' θ ' and 'd' value by using the Nelson-Riley formula:

$$f(\theta) = \frac{1}{2} \left(\frac{\cos^2 \theta}{\sin \theta} + \frac{\cos^2 \theta}{\theta} \right)$$
(3)

The corrected lattice parameter of $Li_4Ti_{5-x}Zr_xO_{12}$ ($0 \le x \le 0.6$) is depicted in Table 1. This shows that the expanded channel by Zr^{4+} -doping improve the Li^+ ion diffusion and the electrochemical properties [39, 40].

Fig. 2 show the initial charge-discharge curves of the hybrid supercapacitors using Li4Ti5-xZrxO12 below x = 0.6 anode at 0.5 Ag⁻¹ from 1.5 to 2.8 V. Typically, the initial charge-discharge curve of supercapacitor shows the symmetrical triangle shape. However, the hybrid supercapacitor consists of anode and cathode which are different in reaction mechanism. Thus, the hybrid supercapacitor shows the initial chargedischarge curves of an asymmetric shape. The initial discharge capacitance was increased with increasing the Zr^{4+} contents below x = 0.45. However, discharge capacitance of Zr^{4+} contents above x = 0.6 is lower than the discharge capacitance of Zr^{4+} contents with x = 0.3, 0.45, respectively. The IR drop is confirmed at the discharge slop from 2.8 to 1.5 V as seen in Fig. 6(b). This is occurred owing to the internal resistance, especially, shows kinetics of Li^+ ion at anode [41]. The IR drop of hybrid supercapacitor can be calculated

Fig. 2. Electrochemical impedance spectra (EIS) curves for the $Li_4Ti_{5-x}Zr_xO_{12}$ ($0 \le x \le 0.6$) anode materials.

using the following equation [42]:

$$R = \frac{V_{charge} - V_{discharge}}{21}$$
(4)

Where, 'V_{charge}' is the cell voltage at the end of charge, 'V_{discharge}' is the cell voltage at the beginning of the discharge, and 'I' is the absolute value of the current, which is the same during the charge and the discharge. The IR drops of the $Li_4Ti_{5-x}Zr_xO_{12}$ below x = 0.6 were calculated by the equation, to be 0.0115, 0.00815, 0.0071, 0.0056 and 0.01112 Ω , respectively. It can be confirmed that the IR drop was decreased with increasing the Zr⁴⁺ content. Therefore, a decreased IR drop of the $Li_4Ti_{5-x}Zr_xO_{12}$ below x = 0.45 means that the performance of charge-discharge is improved due to enhanced conductivity. However, the IR drop of Li₄Ti_{4.4}Zr_{0.6}O₁₂ shows the larger than that of Li₄Ti_{5-x} Zr_xO_{12} with x = 0.3 and 0.45. Because the Li₄Ti_{4.4}Zr_{0.6}O₁₂ has lower conductivity than that of $Li_4Ti_{5-x}Zr_xO_{12}$ with x = 0.3 and 0.45, respectively. The specific capacitances of $Li_4Ti_{5-x}Zr_xO_{12}$ below x = 0.6 shows a 38, 51, 62, 69 and 58 Fg^{-1} , respectively at 0.5 Ag^{-1} rates.

Fig. 3 shows the electrochemical impedance spectroscopy (EIS) curves of $Li_4Ti_{5-x}Zr_xO_{12}$ (0.15 $\leq x \leq 0.45$) after charging at 2.8 V. The EIS curve can be categorized into two parts: a semicircle, and a straight line forming an angle of 45 degrees. The semicircle is situated in high to medium frequency region that corresponds to Li⁺ ions diffusion at the electrode/electrolyte interface [43]. In the high to medium frequency region, R_s presents the ohmic resistance of the electrolyte and R_{et} shows charge-transfer resistance at the active material interface [43]. The straight line located in the low frequency region is called Warburg impedance cause by the semi-infinite diffusion of Li⁺ ion in the electrode [17]. The measured R_{ct} of $Li_4Ti_{5-x}Zr_xO_{12}$ is 99, 74, 53, 47 and 91 mΩ, respectively. The R_{ct} of the $Li_4Ti_{5\text{-}x}$ Zr_xO_{12} (0.15 $\leq x \leq 0.6$) is lower than R_{ct} of the pristine $Li_4Ti_5O_{12}$. The Zr^{4+} doping influenced the enhancement of electron conductivity and ionic conductivity. We can assume that ionic conductivity was improved by the expanded lattice. Therefore, hybrid supercapacitor using the Li₄Ti_{4.55}Zr_{0.45}O₁₂ anode was obtained by the better cycle performance with the lower R_{ct}. However, the excessive Zr4+ content increased the Rct of Li4Ti5-x Zr_xO_{12} . From Table 2, the Li⁺ ions diffusion coefficient $(D_{\rm Li})$ of the Li₄Ti_{5-x}Zr_xO₁₂ anode can be observed the following equation [20]:

$$D_{Li} = 0.5 \left(\frac{RT}{AF^2 \sigma_W C}\right)^2$$
(5)

Here, '*R*' is the gas constant, '*T*' is the absolute temperature, ' σ_w ' is Warburg impedance coefficient, '*F*' is Faraday's constant, '*A*' is the contact area of the electrode surface and '*C*' is the molar concentration of Li⁺ ions. The D_{Li} of the Li₄Ti_{5-x}Zr_xO₁₂ below x = 0.6 are 1.632×10^{-9} , 1.184×10^{-8} , 5.345×10^{-8} , 6.715×10^{-8}

and 7.125×10^{-9} cm²/s, respectively. It is obvious that increasing D_{Li} can be attributed to the Zr⁴⁺ ions dopant. We can infer that Zr⁴⁺-doping enhanced the conductivity expected to affect rate capability of hybrid supercapacitor. Also, this phenomenon is consistent with results in Figure 2.

Fig. 4 shows the rate capabilities of the Li₄Ti_{5-x}Zr_xO₁₂ ($0 \le x \le 0.6$) at different rates from 1.0 to 3.0 Ag⁻¹. There is no difference in the initial retention of samples at 1.0 Ag⁻¹. However, the retention of Li₄Ti_{5-x}Zr_xO₁₂ below x = 0.6 was less decreased than x = 0.6 with increasing the current density. All samples have retentions of more than 48% at 3.0 Ag⁻¹. Among them, the Li₄Ti_{4.55}Zr_{0.45}O₁₂ shows the best retention of more than 60%. The Zr⁴⁺ doping significantly enhanced the rate capability than pristine Li₄Ti₅O₁₂ at high current density.

The ragone plots of the hybrid supercapacitor using the $Li_4Ti_{5-x}Zr_xO_{12}$ anode is shown in Fig. 5. The power density and energy density were calculated by following equations [44].

Fig. 3. Different charge-discharge rates of the hybrid supercapacitors using the $Li_4Ti_{5-x}Zr_xO_{12}$ ($0 \le x \le 0.6$) anode materials from 1 to 3 Ag⁻¹.

Fig. 4. (a) Initial charge-discharge curves of the hybrid supercapacitors using $\text{Li}_4\text{Ti}_{5-x}\text{Zr}_x\text{O}_{12}$ ($0 \le x \le 0.6$) anode materials. (b) Initial charge-discharge curves between 2.6 and 2.9 V.

Fig. 5. Ragone Plots of the hybrid supercapacitors using Li_4Ti_{5-x} Zr_xO_{12} ($0 \le x \le 0.6$) anode materials.

$$\mathbf{P} = \Delta \mathbf{V} \times \frac{\mathbf{i}}{\mathbf{m}} \tag{6}$$

$$E = P \times \frac{t}{3600}$$
(7)

$$\Delta V = \frac{(E_{\text{max}} + E_{\text{min}})}{2}$$
(8)

Were 'P' is the power density, 'E' is the energy density, ' E_{max} ' is the voltage at the beginning of the discharge, ' E_{min} ' is the voltage at the end of the discharge, 'I' is the discharge current, 't' is the discharge time, and 'm' is the total mass of electro active materials in both anode and the cathode. The hybrid supercapacitor using Li₄Ti_{5-x}Zr_xO₁₂ anode exhibited an energy density ranging from 9.8 to 65.2 Whkg⁻¹ and power density ranging from 212.3 to 5982.4 W kg⁻¹. In order to prove the superior performance of the Li₄Ti_{5-x}Zr_xO₁₂/activated carbon, our composition was compared with other asymmetric systems. It can be seen that the Li₄Ti_{5-x}Zr_xO₁₂/ activated carbon show better energy and power density than the asymmetric systems such as LTO/AC [45], C-LTO/AC [46], C-LTP/AC [47] and TNW/CNT [48].

Conclusions

In this study, we investigated the structural characteristics and electrochemical performance of hybrid supercapacitor using $Li_4Ti_{5-x}Zr_xO_1$ /activated carbon. When Zr^{4+} entered $Li_4Ti_5O_{12}$, the Zr^{4+} doping increased the lattice parameter of $Li_4Ti_5O_{12}$. We can confirm that diffusion coefficient of Li^+ was increased by lattice parameters. The hybrid supercapacitor using $Li_4Ti_{5-x}Zr_xO_{12}$ (x = 0.15, 0.3, and 0.45) obviously improved the rate capability related charge transfer resistance. The power and energy density of hybrid supercapacitor using $Li_4Ti_{4.55}Zr_{0.45}O_{12}$ were 212.3 W kg⁻¹ and 65.2 Wh kg⁻¹, respectively. However, excessive Zr^{4+} doping of x = 0.6 cause a negative effect on the structure and electrochemical performance. We concluded that the hybrid supercapacitor using $Li_4Ti_{4.55}Zr_{0.45}O_{12}$ can be

Improving rate capabilities of hybrid supercapacitor using $Li_4Ti_{5-x}Zr_xO_{1/x}$ activated carbon

regarded as a next generation energy storage device.

Reference

- S. H. Lee, H. K. Kim, Y. S. Yun, J. R. Yoon, S. G. Lee, and Y. H. Lee, Int. J. Hydrogen Energy 39 (2014) 16569.
- S. H. Lee, H. K. Kim, J. H. Lee, S. G. Lee, Y. H. Lee, Mater. Lett. 143 (2015) 101.
- W. L. Wang, E. M. Jin, H. B. Gu, Trans. Electr. Electron Mater. 13 (2012) 121.
- 4. Chao Zheng, Xufeng Zhou, Hailiang Cao, Guohua Wang, Zhaoping Liu, J. Power Sources 258 (2014) 290.
- 5. Chenguang Liu, Zhenning Yu, David Neff, Aruna Zhamu, and Bor Z. Jang, Nano Lett. 10 (2010) 4863.
- 6. By Qiang Wang, Zhenhai Wen, and Jinghong Li, Adv. Funct. Mater. 16 (2006) 2141.
- 7. Yasunori Baba, Shigeto Okada, Jun-ichi Yamaki, Solid State Ionics 148 (2002) 311.
- Ting-Feng Yi, Li-JuanJiang, J. Shu, Cai-Bo Yue, Rong-Sun Zhu, Hong-Bin Qiao, Journal of Physics and Chemistry of Solids 71 (2010) 1236.
- K. Karthikeyan, V. Aravindan, S.B. Lee, I.C. Jang, H.H. Lim, G.J. Park, M. Yoshio, Y.S. Lee, Journal of Alloys and Compounds 504 (2010) 224.
- Yong-gang Wang, Yong-yao Xia, Electrochemistry Communications 7 (2005) 1138.
- 11. Xing Li, Meizhen Qua, Yongjian Huaia, Zuolong Yua, Electrochimica Acta 55 (2010) 2978.
- Y. Zhao, S. Pang, C. Zhang, Q. Zhang, L, Gu, X. Zhou, G. Li, and G. Cui, J. Solid State Electrochem. 17 (2013) 1479.
- G.R. Hu, X.L. Zhang, and Z.D. Peng, *Trans. Nonferrous Met. Soc. China* 21 (2011) 2248.
- 14. H. G. Jung, N. Venugopal, B. Scrosati, and Y. K. Sun, J. Power Sources 221 (2013) 266.
- 15. C. Jiang, M. Ichihara, I. Honma, and H. Zhou, *Electrochim.* Acta 52 (2007) 6470.
- 16. J. Gao, J. Ting, C. Jiang, and C. Wan, Ionics 15 (2009) 597.
- 17. B. Lee and J. R. Yoon, Curr. Appl. Phys. 13 (2013) 1350.
- Caixia Qiu, Zhongzhi Yuan, Ling Liu, Sijie Cheng, and Jincheng Liu, Chin. J. Chem. 31 (2013) 819.
- T. F. Yi, B. Chen, H. Y. Shen, R. S. Zhu, A. N. Zhou, and H. B. Qiao, *J. Alloys Comp.* 558 (2013) 11.
- 20. X. Li, M. Qu, and Z. Yu, J. Alloys Comp. 487 (2009) L12.
- 21. J. S. Park, S. H. Baek, T. Park, and J. H. Kim, J. Korean Phys. Soc. 64 (2014) 1545.
- B. Zhang, H. Du, B. Li, and F. Kang, Electrochem. Solid-State Lett. 13 (2010) A36.
- 23. T. F. Yi, Y. Xie, Q. Wu, H. Liu, L. Jiang, M. Ye, and R. Zhu, J. Power Sources 214 (2012) 220.
- J. Wolfenstine and J. L. Allen, J. Power Sources 180 (2008) 582.

- D. Capsoni, M. Bini, V. Massarotti, P. Mustarelli, S. Ferrari, G. Chiodelli, M. C. Mozzati, and P. Galinetto, J. Phys. Chem. C 113 (2009) 19664.
- 26. T. F. Yi, S. Y. Yang, X. Y. Li, J. H. Yao, Y. R. Zhu, and R. S. Zhu, J. Power Sources 246 (2014) 505.
- 27. T. F. Yi, Y. R. Zhu, X. D. Zhu, C. B. Yue, A. N. Zhou, and R. S. Zhu, Electrochimica Acta 54 (2009) 7464.
- D. Liu, C. Ouyang, J. Shu, J. Jiang, Z. Wang, and L. Chen, physica status solidi (b) 243 (2006) 1835.
- 29. T. F. Yi, Y. Xie, J. Shu, Z. Wang, C. B. Yue, R. S. Zhu, and H. B. Qiao, J. Electrocem. Soc. 158 (2011) A266.
- 30. T. F. Yi, Y. Xie, L. J. Jiang, J. Shu, C. B. Yue, A. N. Zhou, and M. F. Ye, RSC Adv. 2 2012) 3541.
- Hun-Gi Jung, Chong Seung Yoon, Jai Prakash, and Yang-Kook Sun, J. Phys. Chem. C 113 (2009) 21258.
- 32. G. Du, N. Sharma, V. K. Peterson, J. A. Kimpton, D. Hia, and Z. Guo, Adv. Funct. Mater. 21 (2011) 3990.
- Haiying Yu, Xianfa Zhang, A.F. Jalbout, Xuedong Yan, Xiumei Pan, Haiming Xie, Rongshun Wang, Electrochimica Acta 53 (2008) 4200.
- 34. E. M. Sorensen, S. J. Barry, H. K. Jung, J. M. Rondinelli, J. T. Vaughey, and K. R. Poeppelmeier, Chem. Mater. 18 (2006) 482.
- Chunhai Jiang, Yong Zhou, Itaru Honma, Tetsuichi Kudo, Haoshen Zhou, J. Power Sources 166 (2007) 514.
- 36. Z. Yu, X. Zhang, G. Yang, J. Liu, J. Wang, and R. Wang, J. Zhang, Electrochim. Acta 56 (2011) 8611.
- N. Tigau, V. Ciupina, G. Prodan, G.I. Rusu, and E. Vasile, J. Crystal Growth 269 (2004) 392.
- 38. A. Hussain, A. Begum, and A. Rahman, Arab. J. Sci. Eng 38 (2013) 169.
- 39. B. H. Choi, D. J. Lee, M. J. Ji, Y. J. Kwon, and S. T. Park, J. Korean Ceram. Soc. 47 (2010) 638.
- 40. Q. Zhang, C. Zhang, B. Li, S. Kang, X. Li, and Y. Wang, Electrochim. Acta 98 (2013) 146.
- 41. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, and F. Wei, Adv. Funct. Mater. 21 (2011) 2366.
- 42. J. Y. Luo and Y. Y. Xia, J. Power Sources 186 (2009) 224.
- 43. B. Tian, H. Xiang, L. Zhang, Z. Li, and H. Wang, Electrochim. Acta 55 (2010) 5453.
- 44. S. H. Lee, S. G. Lee, J. R. Yoon, H. K. Kim, J. Power Sources 273 (2015) 839.
- Dario Cericola, Petr Novák, Alexander Wokaun, Rüdiger Kötz, J. Power Sources 196 (2011) 10305.
- Hun-Gi Jung, Nulu Venugopal, Bruno Scrosati, Yang-Kook Sun, J. Power Sources 221 (2013) 266.
- 47. Jia-Yan Luo, Yong-Yao Xia, J. Power Sources 186 (2009) 224.
- 48. Qiang Wang, Zhenhai Wen, and Jinghong Li, Adv. Funct. Mater 16 (2006) 2141.