JOURNALOF

Ceramic Processing Research

Synthesis of broadband emission phosphor $Ca_2KMg_2(V_{1x}P_x)_3O_{12}$ for white light emitting diodes

M. Maeda^a, K. Uematsu^b, S. Kamei^c, T. Ishigaki^c, K. Toda^{a,c,*} and M. Sato^{b,c}

^aGraduate School of Science and Technology, Niigata University, Japan

^bDepartment of Chemistry and Chemical Engineering, Niigata University, Japan

^cCenter for Transdisciplinary Research, Niigata University, Japan

We report the increased emission intensity of $Ca_2KMg_2V_3O_{12}$ by partially substituting the V⁵⁺ ion for the P⁵⁺ ion. The emission intensity of $Ca_2KMg_2(V_{0.95}P_{0.05})_3O_{12}$ was approximately 1.3 times greater than that of $Ca_2KMg_2V_3O_{12}$. The obtained phosphors were excited and emitted at 360 nm and 520 nm, respectively, and the emission obtained as a greenish white emission. The color coordinates of $Ca_2KMg_2(V_{0.95}P_{0.05})_3O_{12}$ were x = 0.377 and y = 0.463.

Key words: Host-sensitized luminescence, VO₄³ tetrahedron, Vanadate, Phosphor.

Introduction

Recently, the white LED (WLED) has been used as a new light source for replacing incandescent and fluorescent lamps. WLEDs consist of blue LED chips and yellow phosphor ($Y_3Al_5O_{12}:Ce3^+$) [1, 2] or ultraviolet LED (UVLED) chips and red-green-blue phosphors [3, 4]. These phosphors use rare earth elements as host materials and luminescent centers. For example, $Y_2O_2S:Eu^{3+}$, $SrAl_2O_4:Eu^{2+}$, and $BaMgAl_{10}O_{17}:Eu^{2+}$ phosphors show red, green, and blue emissions under near-UV light excitation, respectively [5 - 7]. However, rare earth elements are very expensive compared with alkaline metal and alkaline earth metal elements, because rare earth elements supply was limited all over the world. Therefore, it is necessary to develop new phosphors without rare earth elements.

The VO₄³ tetrahedron is well known as the luminescent center of a host-sensitized luminescence phosphor. Host-sensitized luminescence is attributable to the charge transfer (CT) transition, which is due to the electron transition between the central metal ion (V⁵⁺) of the coordination polyhedron and the ligand (O²). The emission mechanism of the VO₄³ group is shown in Figure 1 [8]. The molecular orbital of the V⁵⁺ ion, which has Td symmetry, is expressed as ground state ¹A₁ and as excited state levels ¹T₁, ¹T₂, ³T₁, and ³T₂. The absorption bands for Ex₁ and Ex₂ correspond to partly allowed spin-forbidden transitions from the ground state ¹A₁ to the excited state levels of ¹T₂ and ¹T₁, respectively.

In general, the vanadate phosphors exhibit low emission efficiency [8]. The energy transfer tends to favor nonradiative transition process which is said thermal quenching, because the energy transfer between the VO₄³ tetrahedron is likely to occur. In fact, luminescence of YVO₄ is not observed at room temperature, however it is observed in $YPO_4:VO_4^{3-}$ mixed crystals. The energy transfer between the VO_4^{3} tetrahedron is inhibited, because the average distance between the VO₄³ tetrahedron increased by substituting the P^{5+} ion for the V^{5+} ion in YVO₄. Therefore, the luminescent properties of vanadate phosphors are expected to enhance by partially substituting the P^{5+} ion for the V^{5+} ion. The V^{5+} ion can substitute for the P^{5+} ion because the ionic radius of the V^{5+} ion (coordination number (CN)=4, 0.0495 nm) is close to that of the P^{5+} ion (CN = 4, 0.0310 nm) and has the same cation valence.

Fig. 1. Schematic model for the absorption and emission processes of the VO₄³⁻ tetrahedron having T_d symmetry [8]. The absorption bands for Ex₁ and Ex₂ correspond to partly allowed spin-forbidden transitions from the ground state ¹A₁ to excited state ¹T₂ and ¹T₁ levels, respectively. The emission band is attributed to Em₁ and Em₂ from the excited states ³T₂ and ³T₁ to the ground state ¹A₁, respectively.

^{*}Corresponding author:

Tel :

Fax:

E-mail: ktoda@eng.niigata-u.ac.jp

In this study, we investigated the XRD patterns and luminescent properties of $Ca_2KMg_2V_3O_{12}$ substituted with P^{5+} ion.

Experimental

Ca₂KMg₂V₃O₁₂ was synthesized by a conventional solid state reaction method. The starting materials were a stoichiometric mixture of CaCO₃ (Kanto Chemical, Co., lnc 4N), K₂CO₃ (Kanto Chemical, Co., lnc 4N), MgO (Kanto Chemical, Co., lnc 3N), V₂O₅ (Kojundo Chemical Laboratory, Co., Ltd. 4N), and (NH₄)₂HPO₄ (Kanto Chemical, Co., lnc 2N) powders. The mixture of the starting materials was fired in a platinum crucible at 973 K for 6 h in air. After grinding, the obtained samples were agitated in pure water for 24 h in order to remove the impurity phase of KVO₃. It was filtered and dried at 323 K. The obtained samples were characterized using powder X-ray diffraction and photoluminescence measurements.

Powder XRD data was measured by using a diffractometer (MX-Labo with Cu K α radiation; Mac Science Ltd.). Excitation and emission spectra of the powdered samples were measured using a spectrofluorometer (FP-6500/6600 with 150 W Xenon lamp; Jasco Inc.).

Results

Figure 2 shows the crystal structure of $Ca_2KMg_2V_3O_{12}$ [9]. This compound has a cubic structure (a = b = c = 12.50031 nm) with an Ia3d space group. The (Ca²⁺/ K⁺)O₈ dodecahedron and the VO₄³⁻ tetrahedron are linked to each other in the lattice, which form three dimensional chains. Each VO₄³⁻ tetrahedron is isolated within the lattice such as in Ba₃V₂O₈ and ScVO₄ [10-11]. Figure 3(a) shows XRD patterns of Ca₂KMg₂ (V_{1x}P_x)₃O₁₂ (x = 0 - 0.5). When the concentration of the P⁵⁺ ion was x = 0 - 0.5, Ca₂KMg₂(V_{1x}P_x)₃O₁₂ were obtained as a main phase.To identify the impurity phases and the shift in the XRD patterns more clearly, a part of Figure 3(a) (2 θ = 28 ° - 38 °) is presented in Figure 3(b). The peaks of the impurity phase were observed at 2 θ = 28.5 °, 34.4 °, and 31.0 °. The peaks of

 $2\theta = 28.5^{\circ}$ and 34.4° were (121) and (200) of the KVO₃ phase. The peak of $2\theta = 31.0^{\circ}$ was (2010) of the β -Ca₃P₂O₈ phase. The solid solubility limit of the P⁵⁺ ion in Ca₂KMg₂(V_{1x}P_x)₃O₁₂ was approximately x = 0.2, because the diffraction peaks of the samples were not shifted on the high angle side and the β -Ca₃P₂O₈ phase appeared up to x = 0.2.

Figure 4 shows the XRD patterns of $Ca_2KMg_2V_3O_{12}$ before and after washing in pure water for 24 h at room temperature. According to the results, we obtained the single phase $Ca_2KMg_2V_3O_{12}$ by washing in pure water because KVO_3 dissolved in pure water at room temperature. Moreover, $Ca_2KMg_2V_3O_{12}$ was very stable

Fig. 2. Crystal structure of $Ca_2KMg_2V_3O_{12}$. Tetrahedrons are VO_4 , octahedrons are MgO_6 , and spheres are Ca^{2+} or K^+ .

Fig. 3. (a) XRD patterns of $Ca_2KMg_2(V_{1x}P_x)_3O_{12}$ (x = 0 - 0.5). The standard patterns of $Ca_2KMg_2V_3O_{12}$ (JCPDS No.24-1044) are attached. (b) Part of the XRD patterns of $Ca_2KMg_2(V_{1x}P_x)_3O_{12}$ (x = 0 - 0.5) ($2\theta = 28^\circ - 38^\circ$).

for pure water.

Figure 5 shows the excitation and emission spectra of $Ca_2KMg_2V_3O_{12}$ before and after washing in pure water. In the samples after washing, the excitation spectra of KVO₃ were not observed because KVO₃ dissolved in pure water as described in Figure 3(b). The samples

Fig. 4. XRD patterns of $Ca_2KMg_2V_3O_{12}$ before and after washing in pure water.

Fig. 5. Excitation and emission spectra of $Ca_2KMg_2V_3O_{12}$ before and after washing in pure water.

exhibited broadband excitation spectra ranging over 200 - 450 nm; the main peak was at 350 nm with a weak shoulder peak at 280 nm. The main and shoulder peaks corresponded to Ex_1 and Ex_2 , respectively. On the other hand, the broadband emission spectra between 400 nm and 700 nm consisted of double peaks with maxima at 510 nm and 560 nm. The peaks at 510 nm and 560 nm corresponded to Em_1 and Em_2 , respectively. Moreover, the emission intensity of the sample after washing was greater than that before washing. This phenomenon is explained by the fact that the sample was able to absorb excitation energy efficiently by removing KVO₃.

Figure 6 shows the concentration dependence of the emission intensity of $Ca_2KMg_2(V_{1x}P_x)_3O_{12}$ (x = 0 - 0.5). The optimum concentration of P⁵⁺ ion was x = 0.05. The emission intensity of $Ca_2KMg_2(V_{0.95}P_{0.05})_3O_{12}$ was 1.3 times greater than that of $Ca_2KMg_2V_3O_{12}$. This phenomenon was explained that the energy transfer between the VO₄³ tetrahedron was inhibited by substituting the P⁵⁺ ion for the V⁵⁺ ion same as the YPO₄:VO₄³⁻ phosphor [12]. As described in introduction, YVO₄ do

Fig. 6. Concentration dependence of the emission intensity of $Ca_2KMg_2(V_{1x}P_x)_3O_{12}$ (x = 0 - 0.5).

Fig. 7. Chromaticity diagram of $Ca_2KMg_2(V_{0.95}P_{0.05})_3O_{12}$.

not emit at room temperature owing to the thermal quenching. However $YPO_4:VO_4^3$ mixed crystals is improved the thermal quenching and show the luminescence of VO_4^3 at room temperature, because the average distance between the VO_4^3 tetrahedron increased by substituting the P^{5+} ion for the V^{5+} ion.

Figure 7 shows the chromaticity diagram of $Ca_2KMg_2(V_{0.95}P_{0.05})_3O_{12}$. The sample was expressed using the color coordinates of the CIE (Commission Internationale de l'Eclairage) chromaticity diagram at x = 0.377 and y = 0.463. It indicated that the location of the color coordinates of $Ca_2KMg_2(V_{0.95}P_{0.05})_3O_{12}$ was near the white region and closed to the pure white point at x = 0.333 and y = 0.333.

Conclusion

In conclusion, we obtained the sample as $Ca_2KMg_2V_3O_{12}$ in a main phase by using a solid state reaction. After agitating in pure water at room temperature, Ca_2KMg_2 $(V_{1x}P_x)_3O_{12}$ (x = 0 - 0.2) was obtained as $Ca_2KMg_2V_3O_{12}$ in a single phase, because KVO₃ was dissolved in pure water. The main excitation band of this greenish white phosphor was at 360 nm, and the dominant emission peak was at 520 nm. The emission intensity of $Ca_2KMg_2(V_{0.95}P_{0.05})_3O_{12}$ was approximately 1.3 times greater than that of $Ca_2KMg_2V_3O_{12}$. The energy transfer between the $VO_4{}^3$ tetrahedron was inhibited, because the average distance between the $VO_4{}^3$ tetrahedron increased by substituting the P^{5+} ion for V^{5+} ion. Therefore, we expect this material to be useful in applications for WLEDs without rare earth elements.

Acknowledgements

This work was supported by a project from the Center for Transdisciplinary Research, Niigata University.

References

- 1. R.J. Xie, M. Mitomo, K. Uheda, F.F. Xu, and Y.J. Akimune, Am. Ceram. Soc. 85 [2] (2002) 1229-1245.
- O.A. Lopez, J. McKittrick, and L.E. Shea, J. Lumin. 71 [1] (1997) 1-11.

- C.-K. Chang, and T.-M. Chen, Appl. Phys. Lett. 90 [16] (2007) 161901.
- 4. G. Webster, and H.G. Drickamer, J. Chem. Phys. 72 (1980) 3740-3748.
- T.W. Choua, S. Mylswamya, R.S. Liua, and S.Z. Chuang, Solid State Communications 136 (2005) 205-209.
- L,-T. Chena, C,-S. Hwang, I,-G. Chena, and S,-J. Chang, J. Alloys Compd. 426 (2006) 395-399.
- 7. C. Shen, Y. Yang, S. Jin, and J. Ming, Physica B 405 (2010) 1045-1049.
- T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai, J. Lumin. 129 (2009) 1598-1601.
- J. Li, K. Qiu, J. Li, W. Li, Q. Yang, and J. Li, Mater. Res. Bull. 45 (2010) 598-602.
- 10. K.-C. Park, and S.-I. Mho, J. Lumin. 122-123 (2007) 95-98.
- B.C. Chanoumakos, M.M. Abraham, and L.A. Boatner, J. Solid State Chem. 109 (1994) 197-202.
- S. Shionoya, W.M. Yen and T. Hase, in "Phosphor handbook/edited under the auspices of the Phosphor Research Society; editorial committee co-chairs" (CRC press, Newyork, 1999).