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We report the improved crystal quality and optical property in (11-22) semipolar InGaN/GaN light emitting diodes (LEDs)
grown on hemi-spherically patterned SiO2 mask on m-plane sapphire substrate (HP-SiO2) compared with the m-plane
sapphire substrate (m-planar), using metalorganic chemical vapor deposition (MOCVD). The photoluminescence (PL) results
showed that the integrated intensity of the near band edge (NBE) emission of the GaN layer grown on HP-SiO2 was increased
by 3 times as high as that of m-planar. The full width at half maximums (FWHMs) of X-ray rocking curves for the on- and
off-axis planes of the GaN layers on HP-SiO2 were narrower down than on m-planar, which indicates that the crystal quality
of the semipolar GaN layers on HP-SiO2 was considerably improved as compared with that on m-planar by reducing defects
such as perfect/partial dislocations and basal stacking faults. Cross- sectional transmission electron microscopy (TEM) images also
showed the reduction of dislocation density in GaN layers on HP-SiO2 than on m-planar. The optical power of InGaN/GaN LEDs
with HP-SiO2 was increased by 1.7 and 7.3 times at injection current of 20 mA and 100 mA, respectively, in comparison with
the m-planar LEDs.

Key words: Semipolar GaN, Hemispherically SiO2 mask, Patterned sapphire substrate, Lateral over growth, Metalorganic
chemical vapor deposition.

Introduction

In general, c-plane InGaN/GaN multiquantum-well
structure is widely used in blue and green light emitting
diodes (LEDs) [1-2]. However, in the c-plane polar
structure of InGaN/GaN quantum wells (QWs), strong
spontaneous and piezoelectric polarizations exist [3].
These polarizations lead to large electric fields separating
electron and hole wave functions [4]. Therefore, the
radiative recombination lifetime in the films increases,
which raises the probability of non-radiative recombination
and decreases the achievable internal quantum efficiency
in InGaN/GaN quantum wells [5-6]. To solve these
problems, many research groups have studied non-polar
[7-8] and semipolar GaN and InGaN/GaN LEDs [9-
10], which could reduce polarization-induced electrostatic
fields. Especially, the specific features of (11-22)
semipolar InGaN/GaN structures are emphasized, which
can be beneficial for improving the optical and transport
properties of quantum-well based light emitting devices
in comparison with those of non-polar structures [11].
However, semipolar hetero-epitaxial structures grown
in (11-22) crystal orientation suffer from a high density
of defects such as basal stacking faults (BSFs), several
types of perfect dislocations, and partial dislocations

(PDs) terminating the BSFs [12]. To reduce these
defects, several research groups have reported on the
use of SiO2 mask and patterned sapphire [13-17].
Actually, for improved performance of the LEDs, we
need to achieve high extraction efficiency as well as
the low defect density in epi structure of LEDs. In
general, the use of a hemispherical patterned sapphire
substrate is known to be beneficial to improve light
extraction efficiency [18]. Therefore, in this study, we
report an improvement of the crystal quality and optical
property of the (11-22) semipolar InGaN/GaN LEDs
grown on hemispherically patterned SiO2 mask.

Experimental

Figs. 1(a)-(d) show a schematic of the substrate
preparation process to prepare the HP-SiO2 mask on
sapphire substrate. As shown in Fig. 1(a), firstly,
1.1 μm SiO2 layers were deposited on the m-plane
sapphire substrates by plasma-enhanced chemical vapor
deposition (PECVD). Secondly, a positive photoresist
(PR) was coated and patterned with 2 × 2 μm2 using a
mask aligner with a deep ultraviolet lamp, as shown in
Fig. 1(b).Then they were shaped into hemispherical PR
patterns using a thermal reflow technique and HP-SiO2

mask was formed by inductively coupled plasma (ICP)
etching with C4F8 based plasmas, respectively, as
shown in Figs. 1(c)-(d). For (11-22) semipolar GaN
template layer growth, two step growth methods were
used for improving the surface morphology and crystal
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quality of GaN layers on m-planar and HP-SiO2

substrates using metalorganic chemical vapor deposition
(MOCVD) [19]. The surface morphology of the semipolar
GaN layer was observed by scanning electron microscopy
(SEM). The room-temperature (RT) and low-temperature
(LT) photoluminescence (PL) analyses were conducted
using the 325 nm line of a He-Cd laser to investigate the
luminescence characteristics at 300 K and 18 K,
respectively. The crystal quality of the GaN layers was
measured using a omega scan of double crystal X-ray
diffraction (DCXRD). The cross-section microstructure
of the GaN layer was observed by transmission electron
microscopy (TEM). The optical power of (11-22) semipolar
InGaN/GaN LEDs was measured by electroluminescence
(EL) measurement on the tops of processed LED chips
fabricated with a size of 400× 400μm2.

Results and Dscussion

Figs. 2(a)-(b) show the SEM images of m-planar and
HP-SiO2 substrates, respectively. HP-SiO2 patterns were
formed with a diameter of 2 μm, a height of 0.6 μm,
and as interval for 2 μm for each pattern. Figs. 2(c)-(d)
show the SEM images of surface morphology of the
(11-22) GaN layers with the thickness of 6 μm grown
on m-planar and HP-SiO2, respectively. All samples

show arrowhead-like feature along the [-1-123]
direction which is caused by the anisotropic diffusion
length of surface adatoms toward crystallographic
directions such as [11-2-3] and [1-100] owing to the
crystallographic difference between m-plane sapphire
and (11-22) semipolar GaN [20]. Also, the arrow-head
shape of (11-22) semipolar GaN surface on HP-SiO2 is
wider than that of m-planar, which is attributed to the
relaxation of anisotropic growth by enhanced lateral
surface migration of Ga atoms along <1-100>
directions [10, 21].

Figs. 3(a) and [(b)-(d)] show the RT-PL and LT-PL
spectra of (11-22) GaN on m-planar and HP-SiO2,
respectively. As shown in Fig. 3(a), the integrated RT-
PL intensity of (11-22) GaN on HP-SiO2 was increased
by approximately 3 times than on m-planar, which is
due to the improvement in crystal quality and extraction
efficiency. In the Figs. 3(b)-(d), the LT-PL spectra at
3.32 eV, 3.42 eV and 3.48 eV are related with the
partial dislocations (PDs), basal stacking fault (BSFs)
and near-band-edge (NBE) emission, respectively [22-24].
As shown in Table 1, the ratio of the integrated intensity of
the BSFs to the NBE (IBSFs/INBE) decreased from 81
to 38 for (11-22) GaN on m-planar and on HP-SiO2,

respectively. The ratio of the intensity of the PDs to
the NBE (IPDs/INBE) also decreased from 38 to 14.
These results indicated that the BSFs and PDs of (11-
22) GaN layers were effectively decreased by
introducing HP-SiO2.

Figs 4(a)-(b) show the FWHMs of x-ray rocking
curves of on-axis and off-axis planes of GaN layers.

Fig. 1. Schematic of the substrate preparation process.

Fig. 2. SEM images of (a) m-planar and (b) HP-SiO2 substrates,
respectively. The surface morphology of the (11-22) GaN
layers with the thickness of 6 µm grown on (c) m-planar and
(d) HP-SiO2, respectively.

Fig. 3. (a) Room temperature PL spectra and (b) low temperature
PL spectra of the (11-22) GaN layers on m-planar and HP-SiO2.
The low temperature spectra were resolved into individual peaks
[(c) and (d)] by using a multi-Gaussian fitting (solid line). The
peaks related with PDs, BSFs and NBE were found to be at
3.32 eV, 3.42 eV, and 3.48 eV, respectively.

Table 1. The LT-PL integrated intensity ratio of the BSFs and
PDs to the NBE.

IBSFs/INBE IPDs/INBE

m-planar 81 38

HP-SiO2 38 14



Improvement of crystal quality and optical property in (11-22) semipolar InGaN/GaN... 523

The FWHMs of the on-axis (11-22) XRC at ϕ = 0o and
90o were reported to be associated with partial
dislocations (PDs) with PDs and/or prismatic stacking
faults (PSFs), respectively [25]. As shown in Fig. 4(a),
the FWHMs of GaN on HP-SiO2 were narrower by
approximately 70% at c-axis, and 210% at m-axis, than
those of m-planar, respectively, which indicates the
crystal quality improvement of (11-22) semipolar GaN
layers on HP-SiO2. The FWHMs of off-axis planes
such as (10-10), (11-20), and (0002) are shown in Fig.
4(b) with an inclination angle χ with respect to (11-22)
at various azimuths. The off-axis plane peaks of (10-
10) and (0002) were broadened by basal stacking faults
(BSFs) and PDs and/or perfect dislocations, respectively
[25]. According to the results, the FWHMs of GaN on
HP-SiO2 were decreased by approximately 13% in (10-
10) and 240% in (0002), compared with those of GaN
on m-planar, respectively, which indicates that semipolar

GaN layers grown on HP-SiO2 have much lower defects
such as both BSFs and partial/perfect dislocations.
Especially, it is obvious the reduction of FWHM of
(0002) broadened by PDs and/or perfect dislocations.

Figs.5(a)-(b) show the cross-sectional TEM images
of semipolar GaN layers on m-planar and HP-SiO2

substrates, respectively. The electron diffraction is
taken along z = [1-100] with g = (0002), and it
should be noted that only partial dislocations and
several types of dislocations are observable in this
orientation [22, 26]. As shown in the TEM images, a
large number of dislocations were generated in (11-22)
GaN grown on m-planar, in comparison with that on of
HP-SiO2. As shown in Fig. 5(b), low defect area as
shown in (11-22) GaN on HP-SiO2 compared with that
of m-planar, which indicates that the HP-SiO2 mask
had a considerable effect on the reduction of partial and
perfect dislocations. The cross-sectional TEM observation
supports the reduction of FWHMs of the (0002) off-
axis plane of GaN on HP-SiO2 in comparison with m-
planar, as shown in Fig. 4(b).

Figures 6[(a)-(c)] and (d) show peak wavelength and
optical power as a function of injection current in the
EL measurement of the semipolar InGaN/GaN LEDs
on m-planar, and HP-SiO2 substrates. Figs. 6(a)-(c)
show the peak wavelength changes of the LEDs on m-
planar and HP-SiO2 are 69 nm and 37 nm, respectively.
The wavelength change is attributed to the potential
fluctuations by Indium segregation related with
defects [27-28]. Therefore, this result indicates that
the MQWs of HP-SiO2 LED were formed with better
quality than that of m-planar. In addition, Fig. 6(d), the
optical power of the LEDs at 100 mA on HP-SiO2

substrates increased by 6 times compared with that
of m-planar LED. 

Conclusions

In conclusion, we proposed ELO technology using a
HP-SiO2 mask when (11-22) semipolar GaN layers
were grown on m-sapphire. Semipolar GaN grown on
planar m-sapphire has a very high density of defects such
as partial/perfect dislocations and BSFs. Semipolar GaN
and InGaN/GaN LED growth on HP-SiO2 showed the
better crystal quality and optical properties in comparison
with that of m-planar, which suggests that HP-SiO2 is a
promising technique for growing high performance
semipolar InGaN LEDs.
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Fig. 4. DC-XRD results showing FWHMs of (a) on-axis and (b)
off-axis planes of GaN layers.

Fig. 5. Cross-sectional TEM images of the GaN layers on (a) m-
planar, (b) HP-SiO2. (BF z = [1-100], g = 0002).

Fig. 6. Electroluminescence results of semipolar InGaN QW LEDs.
(a)-(c) Peak wavelength change and (d) Optical power change as a
function of injection current. (Insets of (d) show the EL images).
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