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Analytic expressions have been developed to determine the activation energy of sintering using the Master Sintering Curve

methodology. The analytical equations lead to values of the activation energy within 1% of the true value, whether noise is
present in the data or not. The analytic expressions can further be used to discriminate between alternative kinetic models and

to determine the pre-exponential factor. The origin of the accuracy of the analytical expressions is also discussed.
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Introduction

The sintering of ceramic powders is an Arrhenius-type
kinetic process, and three types of terms customarily
appear in the rate expression for sintering: a pre-
exponential factor, an exponential term containing the
activation energy, and a third term which accounts for
the dependence of the rate on the spatial distribution of
matter. Rate equations for sintering can take numerous
forms depending on the underlying mechanism and
degree of complexity treated [1, 2]. To describe the rate
of sintering, it is desired to have accurate values or
expressions for all three terms appearing in the rate
equation over the full range of density changes, although
in practice this is often not achieved. When it is not
possible to determine all aspects of the rate expression, a
value of the activation energy often suffices, which can
then serve as a basis for comparing the sintering kinetics
of different materials.

To obtain the activation energy of sintering, two
standard types of experiments can be conducted, namely,
isothermal and non-isothermal studies. The rate data
versus time from either of these experiments can then
be analyzed by either differential or integral methods of
kinetic analysis [3]. Typically, a mechanism or model is
assumed, from which the goodness of fit between the
kinetic data and assumed mechanism is then used to
determine rate constants; a plot of the logarithm of the
rate constant versus reciprocal temperature then leads
to regions of linear behavior from which the activation
energy can be determined.

One shortcoming to these approaches is that a closed

form mechanistic description is often desired. For
elementary steps in gas-phase or liquid-phase kinetics
[3-5], such mechanisms are straightforward to postulate.
For heterogeneous or solid-state kinetic processes,
especially the latter for which diffusion may play a role,
more complex mechanisms may need to be invoked.
Even for solid state reactions, however, closed form
expressions for mechanistic testing are available for
idealized types of reactions [6-8], such as for diffusion
control, phase boundary control, and nucleation and
growth.

For the specific case of sintering, however, the spatial
changes of matter during the process preclude a simple,
closed form kinetic expression over a wide range of
density. To circumvent this difficulty, the Master
Sintering Curve (MSC) approach [9], a widely used
integral method [10-26], has been developed to
characterize the sintering process. With the MSC
method, dilatometer data obtained at different heating
rates are used to determine the activation energy of
sintering without having to prescribe specifically the
functional form of an underlying mechanism. The
underlying mechanism (or unknown function) is then
represented in terms of a graph. With this procedure,
however, an integral appears which cannot be solved
analytically, and thus numerical integration is required.

In this work, we develop an approximate analytical
expression to evaluate accurately this integral. We also
illustrate how the analytical expression can be used to
discriminate between alternative postulated kinetic
mechanisms of sintering and to determine the pre-
exponential factor.

Theory

The MSC approach [9] is an integral kinetic method
for obtaining the activation energy of sintering and is
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based on the combined stage sintering model [27],
which treats shrinkage during sintering as arising
from mass transfer due to two diffusion processes,
namely grain boundary and volume diffusion. Changes
in length, L, that occur during sintering are given as a
linearly additive sum of the two diffusional processes as:

(1)

where t is the time, γ is the surface energy, Ω is the
atomic volume, kb is the Boltzmann constant, T is the
absolute temperature, and G is the mean grain
diameter. The coefficients for volume (subscript v) and
grain boundary diffusion (subscript b) are, respectively,
Dv and Db, and δ is the average width of a grain
boundary. The  quantities, which depend on density
but not on the heating schedule, are lumped scaling
functions in terms of the mean grain diameter which
relate driving forces, mean diffusion distances, and
other microstructural aspects that influence the
sintering rate.
  Because the quantities  and G are functions alone
of microstructure or relative density, ρ, Eq. 1 can be
rearranged so that one side, Φ(ρ), contains all the
properties dependant on density whereas the other
side, Θ[T(t)], depends only on the heating schedule
and activation energy. Provided sintering is dominated
by a single mechanism, either volume or grain
boundary diffusion, the factoring of Eq. 1 in this
manner leads to:

(2)

with:

(3)

(4)

In these equations, D0 is the pre-exponential factor for
diffusion, Q is the activation energy, and R is the
universal gas constant. The exponent n is 3 or 4 for
volume or grain boundary diffusion, respectively. Due
to the underlying assumptions, Eqs. 2-4 are only valid
when the microstructural evolution is dependent on
density alone, which is most valid during sintering for
relative densities in the range of 0.6 to 0.9.

The functional relationship between ρ and Φ(ρ) is
the MSC, which is unique for each powder and green
forming method, including a fixed green density.
Since Eq. 4 depends on time and temperature, both of
which are simple to monitor in an experiment, Θ[T(t)]
is known if Q is known or can be approximated. The

equality in Eq. 2 can then be used to obtain the value
of Φ(ρ) without determining the individual factors
comprising Eq. 3 or making any further assumptions.
When ln[Θ[T(t)]] is plotted versus ρ for sintering data
collected at different heating rates, the separate curves
will collapse to a single curve only if the true
activation energy has been established.

For a linear heating rate, β, the temperature evolves
as T = To + β t where To is the initial temperature, and
thus β = dT/dt which leads to:

(5)

We note that in the original MSC method, the
activation energy in Eq. 5 is obtained numerically. In
addition to sintering, the MSC approach can be applied
to other thermally activated processes when the
mechanism is unknown [28], provided that the thermally
activated process has a single activation energy and is
independent of the heating profile.

Prior to the development of the MSC method for
determining the activation energy of sintering, Lee and
Beck [29] had analyzed the kinetics of coal
decomposition obtained by thermogravimetric analysis.
The kinetics of solid decomposition were represented
with an Arrhenius-type expression of the form:

(6)

where A' is the pre-exponential factor, ρ is the
decomposed fraction of solid (the conversion), and
φ ′ (ρ) is a function which depends on the reaction
mechanism. Integration of Eq. 6 between the initial
and final temperatures and conversions yields:

 

              

(7)

The right-hand side of Eq. 7 is the result of
integration by parts and leads to the same integral of
the exponential function in Q, which cannot be
evaluated analytically. By rearranging the terms
containing Q in Eq. 7 and grouping the integrals
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(8)
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For moderate temperatures and large activation
energies, 2RT/Q is far less than unity, and (1 + 2RT/
Q) is approximately equal to one and therefore
approximately constant. Upon factoring (1 + 2RT/Q)
from the integral, one obtains:

   (9)

where λΤ 

and λΤ0 
denote the two terms in square

brackets. Equation 9 can thus be used with a kinetic
mechanism or model to directly find the activation
energy of sintering; some common kinetic models
and their integrated forms are shown in Table 1.
 Equation 9 can be further approximated if, when
compared to λΤ , the value of λΤ0

 is assumed to be
small (which is often the case for T0 moderately
removed from T and for large activation energies) as:

(10)

which can be rearranged to:

(11)

If the correct mechanism is known, then ln[Φ′(ρ)/T2]
plotted versus 1/T yields linear behavior, and the
slope is equal to -Q/R. The pre-exponential factor can
then be obtained from either the intercept or by using
the value of Q with Eq. 11 to obtain Α′ at each value
of T and then averaging these. This summarizes the
method of Lee and Beck [29], which affords a means
to obtain values of Α′ and Q when the kinetic

mechanism is known.
The contribution of this study is to use the

approximation developed for the integral above to
obtain the activation energy of sintering analytically,
instead of numerically as is typically done. We note,
however, that Eq. 5 has a 1/T term not present in Eq.
7, and thus the above method must be modified as
follows [30]. Integration by parts applied to Eq. 5
yields:

         

(12)

where the integral containing the exponential function
now appears twice. Upon using Eq. 9 followed by
rearrangement one obtains the final analytic
expression:

(13)

or in simplified form as:

(14)

All the equations for the master sintering curve can
now be summarized as:

  

 

(15)

We next illustrate how the approximation for the
integral containing the exponential allows one to
obtain Q analytically instead of numerically.

Results

To demonstrate the use of Eq. 15, density versus
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temperature data were simulated at three linear
heating rates of β = 7, 14, and 21 οC minute-1 at three
activation energies of Q = 250, 450, and 650 kJ mol-1

with a pre-exponential factor A=1019 K minute-1.
These data were generated for the case of second
order kinetics by numerical integration of:

(16)

Fig. 1 shows as an example the three curves
generated for Q = 450 kJ mol-1; the shape of these
curves is qualitatively similar to the density profiles
obtained in sintering experiments. We note that to
arrive at Eq. 16, the pre-exponential factor A′ in Eq. 6
has been replaced with A′ = A/T in order to obtain the
form of the temperature dependence in the integral
appearing in the MSC method (Eq. 5).

Values of ln[Θ[T(t)]] for each density-versus-
temperature data set were then calculated with the
three different equations given below:

(17)

(18)

(19)

Equation 17 was integrated numerically using the
trapezoidal rule with step sizes of 0.01, 0.001 and

0.0001 relative density. For the simulations generated
with an activation energy of 450 kJ mol-1, the
difference in calculated activation energies between the
three step sizes was less than 0.0003 kJ mol-1 and thus
a step size of 0.01 is used for all numerical
integrations. In the second approach as given by Eq.
18, the analytic expression in Eq. 14 was used with Eq.
17. Equation 19 was obtained by replacing the 1/T
quantity in Eq. 17 with a logarithmic mean value that
could then be removed from the integral, thereby
allowing for use of Eq. 9 to represent the integral.

For each of the three equations used to represent
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Fig. 1. Relative density data (symbols) versus temperature
simulated from second order kinetics at three heating rates with
Q = 450 kJ mol−1 and A = 1019 K minute−1, the fifth order polynomial
fit is shown by lines.

Fig. 2. Master sintering curves simulated from second order density-
temperature data with A = 1019 K minute−1 for A) Q = 250 kJ
mol−1, B) Q = 450 kJ mol−1, and c) Q = 650 kJ mol−1. In each
panel, nine curves are shown representing three heating rates
which were analyzed with Eq. 17 (symbols), Eq. 18 (dashed lines),
and Eq. 19 (solid lines). The result from Eqs. 17 and 19 are
virtually indistinguishable from each other.
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Θ[T(t)], the same procedure for determining the
activation energy was followed. First, the simulated
temperature-density data were fitted to a fifth order
polynomial over the range of ρ = 0.6 to ρ = 0.9 so that
temperature and Θ[T(t)] values could be directly
compared at discrete values of ρ at the different heating
rates. The absolute values of the differences in
ln[Θ[T(t)]] at the different heating rates were next
summed, and then the Q values for each equation
were varied using a generalized reduced gradient
nonlinear optimization code until the sum reached a
minimum.

Fig. 2 shows the MSCs calculated by the three
methods at the three heating rates for each activation
energy, i.e., there are nine curve in each panel. For each
method, namely Eqs. 17-19, the data at the three
heating rates collapse to a single curve. In addition, the
curves obtained from Eqs. 17 and 19 are virtually
indistinguishable whereas the curves obtained from Eq.
18 are offset relative to the other two at each relative
density. Table 2 compares the original Q values used
to simulate the data with the calculated Q values
determined from Eqs. 17-19. Not surprisingly, numeric
integration (Eq. 17) produced the most accurate results,
in part because the equation involves no approximation
and thus the degree of accuracy depends only on the
step size used. Both approximate analytic equations
were also able to produce activation energies within
0.08% of the input value. In addition, even though the
curves in Fig. 2 from Eq. 18 are different from the
curves for the other two methods, the activation
energies are nearly the same for all cases.

To assess further the utility of the analytical
equations presented above, density data with ± 2%
random noise versus temperature were generated, as
shown in Fig. 3. These curves were next analyzed
using Eqs. 17-19 after fitting the noisy data to a fifth
order polynomial; the results for the Q values with
and without noise are summarized in Table 3. In all
instances, the activation energies determined were
within ~1% of the value of Q = 450 kJ mol-1 used to
generate the data. Once again, the MSC curves (not
shown here) generated by Eqs. 17 and 19 agreed well
with each other. The data in Table 3 thus indicate that
the analytical expressions derived in this work are
robust enough to use on real data which has noise.

To summarize to this point, we note that the MSC
approach is a useful integral method of kinetic
analysis because no knowledge of the functional form
of the underlying kinetic mechanism or model is
required. Both of the analytical equations presented
herein reproduce the activation energies to a high
degree of accuracy and Eq. 19 is especially useful in
that it also quite accurately reproduces the shape of
the MSC profile. In principle, then, the analytical
equations reproduce not only the expression for
Θ[T(t)], namely the value of the integral needed to
determine the activation energy, but also the
expression for Φ(ρ), namely the value of the integral
of the underlying kinetic mechanism. Thus, as kinetic
models or mechanisms become available for
describing the kinetics of sintering via the evolution
of density, such models can be tested for accuracy via
the analytical equations presented here.

As an example of this, density versus temperature
data were simulated for a given Q and A with a
second order mechanism. These data were next
analyzed with Eq. 19, which contains no assumptions
about the underlying kinetic mechanism, to determine
Q via Θ[T(t)], which is equal to Φ(ρ) and also to
Φ′(ρ)/A due to the different factoring of terms in the
MSC method (Eqs. 2-4) as compared to that of Lee
and Beck [29] in Eq. 7. We next use assumed forms
of Φ′(ρ) to simultaneously discriminate between

Table 2. Activation energies determined by the three equations
for different input Q values with second order kinetics and
A = 1019 K minute-1.

Input Q value 
(kJ mol-1)

Q from Eq. 17
(kJ mol-1)

Q from Eq. 18
(kJ mol-1)

Q from Eq. 19
(kJ mol-1)

250 250.00 250.05 249.98

450 449.97 450.10 449.94

650 650.00 650.14 649.94

Fig. 3. Relative density data with ±2% noise versus temperaure
simulated from second order kinetics with A = 1019K minute−1 and
Q = 450 kJ mol−1; the fifth order polynomial fit is shown by lines.

Table 3. Activation energies determined for density data
simulated with and without 2% noise with Q = 450 kJ mol-1 with
second order kinetics and A = 1019 K minute-1.

Q from Eq. 17
(kJ mol-1)

Q from Eq. 18
(kJ mol-1)

Q from Eq. 19
(kJ mol-1)

Without Noise 449.97 450.10 449.94

With ± 2% Noise 456.90 445.09 456.83
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postulated alternative mechanisms and to determine A
via the goodness of fit. For example, if it is assumed that
the underlying kinetics are either first order or second
order, then plots of ln[Φ′(ρ)/A] versus temperature can
be prepared. As seen in Fig. 4, the relationship between
lnΘ[T(t)] and ln[Φ′(ρ)/A] versus temperature is well
described for a second order mechanism, and the
determined value of A is 9.9 × 1018 K minute-1, which is
close to the input value of 1019 K minute-1. For a first
order mechanism, however, lnΘ[T(t)] and ln[Φ′(ρ)/A]
are not in as good agreement, and the value of
A = 3.1 × 1018 K minute-1 is also larger in error. Thus,
the analytical expressions developed in this work can
be used to help discriminate between competing
mechanisms and to determine pre-exponential factors,
as is often done in kinetic analysis.

The analytical equations presented above also afford
another method to discriminate between competing
mechanisms and to determine the pre-exponential factor.
This approach relies on the more traditional graph of
rate data versus reciprocal temperature and then
checking for linear behavior. To perform this analysis,
we follow the procedure outlined by Eqs. 10 and 11,
but now use Eq. 19 without the λ0 term to describe
Φ′(ρ); after algebraic re-arrangement this yields:

(20)

When the left-hand side is graphed versus 1/T, the
slope of the equation is given by -Q/R. Fig. 5A
demonstrates this linear behavior for density data
simulated for second order kinetics with Q = 450 kJ
mol-1 and A = 1019 K minute-1 and then analyzed with
Φ′(ρ) given by a second order mechanism. As shown
in Table 4, this graphical method of analysis leads to
a value of Q within approximately 1% of the value

used to simulate the data. The resulting pre-
exponential, obtained from the intercept or from
averaging the values of A obtained from Eq. 20, is of
the correct order of magnitude and is within 65% of
the input value. If the incorrect mechanism for Φ′(ρ)
is assumed, however, non-linear behavior results (see
Fig. 5B) and both the activation energy and the pre-
exponential factor (see Table 4) are much more
inaccurate as compared to the input values. The
results embodied by Fig. 4 and Table 3 versus those
in Fig. 5 and Table 4 indicate that the former is the
preferred method as more accurate results are
obtained. The poorer accuracy in A arising from the
latter method presumably occurs due to neglect of the
λ0 term; this approximation was used to obtain Eq. 20
in a form suitable for linear analysis.

Discussion

In this work, expressions have been derived to obtain
analytically the activation energy of sintering via the
MSC methodology. The approaches provide reasonable
values of the activation energy, whether noise is

Φ' ρ( ) T T0–( )

Tln T0ln–( )T 2
----------------------------------ln

AR

β Q 2RT+( )
------------------------------ln

Q

RT
-------–=

Fig. 5. Graphical analysis with Eq. 20 for A) second order and B)
first order mechanisms for data simulated from second order
kinetics at three heating rates with Q = 450 kJ mol−1 and
A = 1019 K minute−1.

Table 4. Activation energies and pre-exponential factors
determined from analysis of simulated data using Q = 450 kJ
mol-1 with second order kinetics and A = 1019 K minute-1.

Assumed Mechanism Q (kJ mol-1) A (K minute−1)

First Order 308.7 ± 0.2 2.22 ± 0.3×1013

Second Order 445.2 ± 0.1  3.45 ± 0.01×1018

Fig. 4. Temperature versus lnΘ[Τ(t)] (symbols) obtained from
data simulated from second order kinetics at three heating rates
with Q = 450 kJ mol−1 and A = 1019 K minute−1. Comparison of
temperature versus ln[Φ'(ρ)/Α] and for first order (dashed lines)
and second order (solid lines) mechanisms.
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present in the data or not. The analytic expressions
derived here can also be used to test different kinetic
mechanisms and to determine the pre-exponential
factor. The origin of the insensitivity of the activation
energy obtained from the two analytical expressions is
presented next.

One model to clarify the terms appearing in kinetic
expressions is transition state theory (TST) [3-5],
where the pre-exponential factor arises as a vibration
frequency related to converting activated complexes to
products. A typical form for the pre-exponential factor
in TST is given by:

(21) 

where h is Planck’s constant and ∆S* is the entropy
difference between the reactants and activated
complexes. Thus, TST theory predicts that the pre-
exponential factor depends linearly on temperature.
  An alternative representation is to express the
kinetics of sintering via the diffusion coefficient and
the activity via a modified form of Fick’s Law as:

  (22)

which is the starting point of the sintering model [27,
31] which underlies the MSC method. The
appearance of the inverse dependence on temperature
in Eq. 2 thus arises because of the use of the chemical
potential, µ, to represent the most general driving
force for diffusion and hence sintering. Presumably, if
the diffusivity in Eq. 22 were expressed via TST, then the
resulting terms which constitute the pre-exponential
factor for sintering would not explicitly depend on
temperature. Equations 21 and 22 thus illustrate that
depending on the starting point and form of the kinetic
model, the pre-exponential factor may explicitly
depend linearly, inversely, or not at all on temperature.
  From a practical viewpoint, however, the dependence
of the pre-exponential factor on temperature is often
masked, either from measurement error or from other
parallel or competing mechanisms, when acquiring
kinetic data, and thus the pre- exponential factor is
generally taken as a constant. Activation energies are
then simply obtained from graphical analysis of rate
or rate constant data versus 1/T. In this work, the role
of the factor of 1/T in Eq. 5 can thus be handled in
different ways, as represented by Eqs. 18 and 19.
These two methods, however, lead to similar results,
and the underlying reason is that the kinetic behavior
is dominated by the exponential function, which
dwarfs the weaker dependence on T in the pre-
exponential factor.

Conclusions

Two analytic expressions have been derived to
determine the activation energy of sintering via the
MSC approach, obviating the need for numerical
integration. Both expressions lead to accurate values
of the activation energy within 1%, even when noise
is present in the underlying data. Equation 19 is a
very simple mathematical expression that can be used
to calculate activation energies of thermally activated
systems using the model-free method of the MSC
approach and will also produce an MSC curve
consistent with what is obtained by numeric integration.
Because Eq. 19 can be manipulated analytically in ways
that the original integral expression, Eq. 3, cannot, Eq.
19 has the potential to be a useful tool for
discriminating between kinetic mechanisms and to
determine the pre-exponential factor.
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