JOURNALOF

Ceramic Processing Research

Sonochemical synthesis of highly sinterable/nanocrystalline CeO₂-based electrolyte powders for intermediate-temperature solid oxide fuel cells

Eun-Hui Hyeong^a, Seung-Muk Bae^a, Chan-Rok Park^a, Jong-Sung Park^b, Young-Sung Yoo^c, Hee-Sun Yang^a and Jin-Ha Hwang^{a,*}

^aDepartment of Materials Science and Engineering, Hongik University, Seoul 121-791, Republic of Korea

^bDepartment of Materials Science and Engineering, Myongji University, Gyonggi-do 449-728, Republic of Korea

^cGreen Growth Technology Laboratory, Korea Electric Power Research Institute, 65 Munji-Ro, Yuseong-Gu, Daejeon 305-760, Republic of Korea

Sonochemical processing was used to synthesize highly sinterable nanocrystalline cerium oxide-based materials (i.e., Gd_2O_3 -doped and Sm_2O_3 -doped CeO₂ electrolytes). The crystallinity and grain size was investigated using X-ray diffraction and transmission electron microscopy, confirming that the nanocrystals were approximately 5 nm to 7 nm in size. The feature of nanocrystalline particles resulted in a 200 °C lower sintering temperature than the conventional 1,550 °C sintering temperature used for commercial microcrystalline CeO₂-based materials. This significant improvement in sintering temperature was confirmed by microstructural and sintering characterization.

Key words: Sonochemical processing, Nanocrystalline electrolytes, Solid oxide fuel cells, Cerium oxide.

Introduction

Solid oxide fuel cells (SOFCs) have been receiving extensive academic and industrial attention due to their unique environment-friendly features, such as highly efficient clean energy sources with less pollution and compatibility with recyclable fuels and auxiliary subsystems [1, 2]. Most of the current SOFC research focuses on ZrO₂-based electrolytes operating at high temperatures of 800 °C to 1000 °C [3]. However, hightemperature operation places undesired limitations on the selection of materials for cathodes, electrolytes, anodes, and interconnects as well as gas-impermeable sealing materials. In particular, the interconnect materials are extremely costly and difficult to machine. In order to overcome limitations imposed by high-temperature operation, a new electrolyte is necessary for use below 800 °C, more specifically for operation from 600 °C to 650 °C. To this end, CeO2-based electrolytes have been proposed as promising candidates since they have the highest conductivity among the fluorite-based electrolytes [4]. However, CeO₂-based electrolytes are difficult to sinter and are unstable under a reducing atmosphere, although they do satisfy the high conductivity in oxygen ions prerequisite of intermediate-temperature solid oxide fuel cells [5, 6].

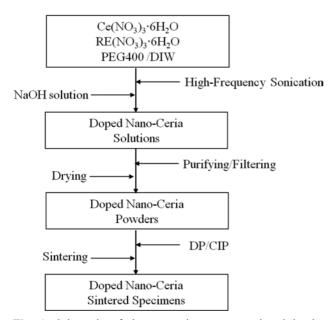
The sintering characteristics can be enhanced by

formed through a variety of fabrication routes [7-9]. Although solid state reactions can be used to synthesize the desired materials, the resulting powder is limited by low sinterability due to the inherent micrometer-scale features of the particles. Therefore, chemically-driven procedures are preferred in terms of purity, homogeneity, and particle size. Specifically, high-frequency sonication in combination with dispersing agents stabilized in a nitrate-based chemical solution is expected to yield high dispersion between particles and nano-scale features in the particle-forming stage. Yin et al. synthesized cerium oxide via a sonochemical approach, but the materials were limited to cerium oxide only and no attempt was made to prepare electrolytes containing dopants [10].

incorporating appropriate additives and/or particle sizes, including nanocrystalline powders, which can be

A novel approach for synthesizing nanocrystalline CeO_2 -based materials with improved sinterability for use in intermediate-temperature solid oxide fuel cells is proposed in this paper. Nanocrystalline CeO_2 powders were synthesized using co-precipitation assisted by high-frequency sonication in order to obtain a high homogeneity and small grain sizes in Gd_2O_3 -doped CeO_2 (GDC) and Sm_2O_3 -doped CeO_2 (SDC). The crystallinity, grain size, microstructure, and composition of the synthesized materials were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectrometry, respectively. The implications of these synthesized materials in the context of intermediate-temperature solid oxide fuel cells are also discussed.

^{*}Corresponding author:


Tel: 82-2-320-3069 Fax: 82-2-333-0127

E-mail: jhwang@wow.hongik.ac.kr

Experimental Procedure

Nanocrystalline GDC and SDC powders were prepared using $Ce(NO_3)_3 \cdot 6H_2O$ (Aldrich, 99.99%), Gd(NO₃)₃·6H₂O (Aldrich, 99.99%), and Sm(NO₃)₃·6H₂O (Aldrich, 99.99%) as starting materials. Predetermined mole fractions of these starting materials were obtained, as shown in Fig. 1, and subsequently dissolved in distilled water along with PEG 400 (poly-ethylene glycol, average $M_w = 400$ g). The CeO₂-based nanoparticles were synthesized through co-precipitation with NaOH (0.02 g/ml), which was added drop-wise up to pH 10 at a temperature of 70 to 80 °C, and high-frequency sonication. The final solution was purified/filtered using non-hydrous ethanol and centrifugation to eliminate the undesired impurities, followed by drying at 80 °C for 12 h then at 120 °C for 2 h. The dried powders (GDC and SDC) were milled using a mortar and pestle to eliminate any particle agglomeration. The final powders were pressed into disk-shaped specimens with diameters of 9 mm and thicknesses of approximately 1 mm using a unidirectional dry press. Specimens were then coldisostatically pressed at 235 MPa for 2 minutes. The pressed specimens were heated at a rate of 3 °C/minute up to 400 °C, where they were held for 1 hr, and finally up to 1350 °C, where they were held for 6 h. After the high-temperature sintering, the specimens were furnacecooled slowly to ambient temperature.

The crystallinity and grain size of the synthesized powders were characterized using X-ray diffraction (MAX Ultima III, Rigaku, Japan) and transmission electron microscopy (Techni, FEI Co., USA). Scanning electron microscopy (JSM-6700F, JEOL, Japan) was employed to observe the microstructure and degree of

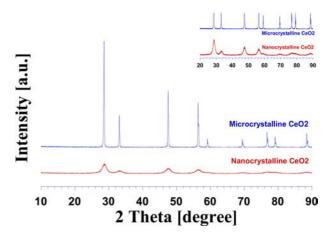


Fig. 1. Schematic of the processing steps employed in the synthesis of CeO₂-based materials. (RE: Rare Earth, DIW: Deionized Water, DP: Dry Pressing, CIP: Cold Isostatic Pressing)

densification in the sintered specimens. The sintering behavior was confirmed using a high-resolution dilatometer (Netsch Dil 402C/3/G, Germany).

Results and Discussion

Fig. 2 compares the powder X-ray diffraction information for microcrystalline (commercial) CeO2 and the nanocrystalline CeO₂ powders synthesized in this work. A comparison of the primary peaks indicates that both materials have a fluorite structure. As expected given the nanocrystallinity of the synthesized powder, the fullwidth-at-half-maximum of the diffraction peaks widened with decreasing grain size. Fig. 3 shows the diffraction patterns of nanocrystalline CeO₂, Gd₂O₃doped CeO₂ and Sm₂O₃-doped CeO₂. Comparison of these XRD data (Fig. 4) suggests that the additive Gd₂O₃ and Sm₂O₃ materials will form corresponding solid solutions that are ionically-conducting. The highresolution transmission electron microscopy images revealed that the size of the GDC particles ranged from 5 nm to 7 nm, without significant agglomeration (Fig. 5). The chemical compositions of the synthesized CeO₂-based materials were analyzed using energy-

Fig. 2. X-ray diffraction data for microcrystalline and nanocrystalline CeO_2 materials.

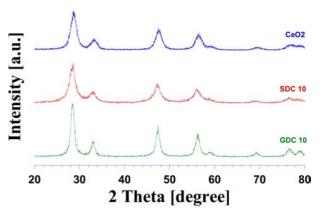
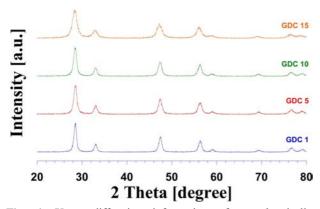
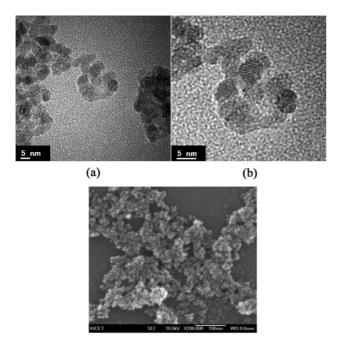
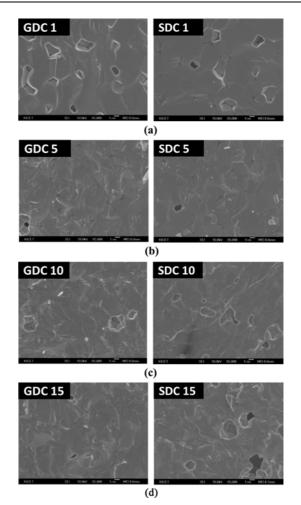




Fig. 3. X-ray diffraction information of sonochemicallysynthesized CeO_2 materials (CeO_2 , Gd_2O_3 -doped CeO_2 and Sm_2O_3 -doped CeO_2).

Fig. 4. X-ray diffraction information of sonochemicallysynthesized Gd_2O_3 -doped CeO_2 as a function of Gd_2O_3 content (1, 5, 10, and 15 mole % Gd_2O_3).

(c)

Fig. 5. Transmission electron microscopy images of nanocrystalline GDC particles: (a) Low magnification TEM image, (b) high-magnification TEM image and (c) SEM image.


dispersive X-ray spectrometry (EDX). As demonstrated in Table 1, the calculated compositions were in reasonable agreement with the compositions calculated initially for 10 mole % solid solutions in terms of the corresponding additives, Gd_2O_3 and Sm_2O_3 .

After sintering, the density of the nanocrystalline CeO₂-based materials increased and no significant pores were evident (Fig. 6). The specimens containing 1 mole % dopant had a higher porosity than the electrolytes containing greater amounts of dopant, and a narrower FWHM than that shown in Figs. 2 and 3 (data not shown). The X-ray diffraction analysis indicated that the resultant materials are of the fluorite structure and the crystal sizes are in the micrometer-scale range. The dilatometry analysis confirmed the accelerated sintering properties of the doped materials

Table 1. Composition analysis of the GDC and SDC nanopowders synthesized through ultrasonication-assisted coprecipitation estimated using energy-dispersive X-ray analysis. ((a) GDC for 10 mole % Gd_2O_3 and (b) SDC for 10 mole % Sm_2O_3)

GDC Powder for 10 mole % Gd ₂ O ₃			
Element	wt%	at%	
O K	24.79	74.53	
Ce L	65.97	22.64	
Gd L	9.24	2.83	
Calculated Atomic Ratio	88.89% / 11.11%		

(b)			
SDC Powder for 10 mole % Sm ₂ O ₃			
Element	wt%	at%	
O K	23.13	72.69	
Ce L	65.98	24.06	
Sm L	10.89	3.25	
Calculated Atomic Ratio	88.10% / 11.90%		

Fig. 6. Microstructure of the sintered GDC and SDC specimens (after sintering at 1350 °C for 6 hrs) as a function of doping concentration. (a) 1 mole% Gd_2O_3 (left) and 1 mole % Sm_2O_3 (right); (b) 5 mole % Gd_2O_3 (left) and 5 mole % Sm_2O_3 (right); (c) 10 mole % Gd_2O_3 (left) and 10 mole % Sm_2O_3 (right); and (d) 15 mole % Gd_2O_3 (left) and 15 mole % Sm_2O_3 (right).

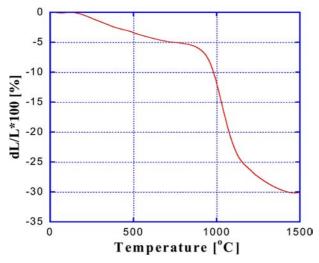


Fig. 7. Dilatometry information for the Gd_2O_3 -doped CeO_2 materials.

lower temperature than the conventional at а temperature of 1550 °C (Fig. 7). The highest shrinkage rate occurred at approximately 1025 °C, and most of the densification occurred below 1350 °C, which was the sintering temperature used in this study. This densification after sintering at 1350 °C was consistent with the microstructure observed using scanning electron microscopy (Fig. 6.). Typically, conventional microcrystalline GDC powders are sintered at 1500 °C to 1550 °C, a much higher temperature than that employed for nanocrystalline CeO₂-based powders. The highest densification was observed in the 15 mole % Gd₂O₃-CeO₂ specimen and the 10 mole % Sm₂O₃-CeO₂ specimen. Furthermore, an intergranular fracture was observed on the electron micrographs, implying superior sinterability between the electrolyte grains.

Although Yin et al. reported the synthesis of nanocrystalline CeO₂ particles, there are no reports of the ultimate sintering behavior of these particles available in the literature [10]. The results of the current study are evidence of the superior sintering features of doped CeO₂ materials and are consistent with the results of the glycine-nitrate method reported by Xia and Liu [11]. The improved sintering features of nanocrystalline CeO₂-based electrolyte powders can be used to impart the structural modifications required for fabrication of intermediate-temperature solid oxide fuel cells with CeO₂-based and ZrO₂-based electrolytes.

Furthermore, a two-phase mixture (e.g., an anode composite) of CeO_2 -based electrolyte and a binary oxide can be fabricated using the proposed approach.

Conclusions

Nanocrystalline CeO₂-based electrolytes were synthesized using co-precipitation combined with highfrequency sonication. The synthesized GDC and SDC powders were comprised of highly homogenized, equiaxed nanocrystals with grain sizes of 5 nm to 7 nm. EDX analysis revealed that the actual composition of the synthesized powders was consistent with the initially calculated composition. Furthermore, the synthesized powders were highly densified at 1350 °C, which is much lower than the temperature required for densification of microcrystalline CeO2-based electrolytes. The highest densities were found in the 15 mole % Gd₂O₃-CeO₂ system and the 10 mole % Sm₂O₃-CeO₂ system. The improved sinterability of these electrolytes can be exploited to create the structural modifications required in the basic unit cells of intermediatetemperature solid oxide fuel cells.

Acknowledgement

This work was supported by the Seoul R&BD Program (CS070157).

References

- 1. R. Mark Ormerod, Chem. Soc. Rev., 32 (2003) 17-28.
- 2. O. Yamamoto, Electrochimica Acta, 45 (2000) 2423-2435.
- 3. J.P.P. Huijsmans, F.P.F. van Berkel, and G.M. Christie Journal of Power Sources, 71 (1998) 107-110.
- 4. H. Inaba and H. Tagawa, Solid State Ionics, 13 (1996) 1-16.
- J. Molenda, K. Swierczek, and W. Zajac, Journal of Power Sources, 173 (2007) 657-670.
- 6. B.C.H. Steele, Solid State Ionics, 129 (2000) 95-110.
- D. Hari Prasad, J.-W. Son, B.-K. Kim, H.-W. Lee, J.-H. Lee, Journal of the European Ceramic Society, 28 (2008) 3107-3112.
- V. Gil, J. Tartaj, C. Moure, and P. Dur'an, J. of the Euro. Ceram. Soc., 26 (2006) 3161-3171.
- Z. Gao, J. Huang, Z. Mao, C. Wang, and Z. Liu, Int. J. of Hydrogem Energy, 35 (2010) 731-737.
- L. Yin, Y. Wang, G. Pang, Y. Koltypin, and A. Gedanken, J. Colloid and Interface Science, 246 (2002) 78-84.
- 11. C. Xia, and M. Liu, Solid State Ionics 423 (2002) 152-153.