JOURNALOF

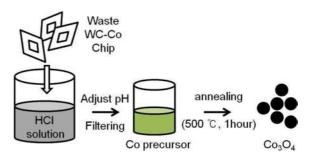
Ceramic Processing Research

Synthesis of LiCoO₂ nano powders using recycled cobalt precursors from waste WC-Co hard metal

Heeseung Yang^a, Jae-Hwan Pee^b, Hyung Tae Kim^a and YooJin Kim^{a,*}

^aEngineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology, Icheon 467-843, Korea ^bCeramicware Technology Center, Korea Institute of Ceramic Engineering and Technology, Icheon 467-843, Korea

LiCoO₂, a cathode material for lithium rechargeable batteries, was prepared using recycled Co₃O₄. First, cobalt powders were separated from waste WC-Co hard metal with an acid-base chemical treatment. Subsequently, Co₃O₄ powders were prepared by thermal treatment of the resulting Co(OH)₂. By adding a predetermined amount of LiOH \cdot H₂O, LiCoO₂ was obtained by sintering for 10 h in air at 800 °C. Nano-sized LiCoO₂ was obtained by thermal treatment of the LiOH-coated Co₃O₄ particles at 500 °C for 3 h. LiOH was coated onto the Co₃O₄ particles by a sonochemical method. The synthesized micro- and nano-LiCoO₂ particles using recycled Co precursors were characterized by X-ray diffraction (XRD) and a scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis.

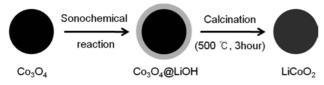

Key words: WC-Co composite powder, Recycle, Cobalt oxide, Lithium cobalt oxide.

Introduction

WC-Co cermets are widely used in cutting tools, metallic molds and highly wear-resistant tools due to their excellent mechanical properties such as high hardness and high transverse rupture strength [1]. The development of an efficient recycling procedure for WC-Co cermets is important for resource recovery and reducing material costs. Various recycling processes of WC-Co cermets, including chemical modification, thermal modification and zinc melt methods, have been investigated and some have been employed in industry [2-3]. Recently, our group described the decomposition mechanism and promoting factors of waste hard metal for a zinc decomposition process to obtain WC [4]. After WC separation, recycled cobalt can be used for functional materials such as CoFe₂O₄ and LiCoO₂.

 $LiCoO_2$ is an attractive material due to its high performance in terms of energy density and cycling life in lithium rechargeable cells [5-6]. $LiCoO_2$ particles are typically prepared by solid state and hydrothermal reactions with various cobalt precursors such as $Co(OH)_2$, $CoCl_2$, and $Co(OAc)_2$ [7-9]. The synthesis of $LiCoO_2$ particles by a sol-gel process and sono-chemical method has also been studied [10-11]. In particular, the sonochemical method is relatively suitable for the synthesis of multi-component materials, because it provides an easy surface coating of materials. The sonochemical method has been used to produce metalcoated materials such as Au coated SiO_2 and Ni coated Al_2O_3 [12-13]. Jugoviæ et al. described an olivine structured LiFePO₄/C composite obtained by the sonochemical method [14].

In this study, we report a method to prepare $LiCoO_2$ using recycled cobalt precursors extracted from a waste cobalt acid solution by pH control after the recycling of WC-Co cermets. Cobalt precursors were oxidized to Co₃O₄ nanoparticles through an annealing process via dehydration reaction in high temperature (Scheme 1). When the recycled Co precursors are used, process costs could be down and effective synthetic process for Co composite material. Two types of LiCoO₂ powders were prepared by different synthetic methods, a solid state reaction at 800 °C for microsized LiCoO2. Also, a sonochemical method using LiOH · H₂O coating on a Co₃O₄ surface through low temperature annealing at 500 °C for nano sized LiCoO₂ (Scheme 2) using recycled Co precursors. Synthesized LiCoO₂ particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.


Scheme 1. Procedure of Co_3O_4 synthesis using extracted Co precursor from waste hard metal.

^{*}Corresponding author:

Tel:+82-31-645-1427

Fax: +82-31-645-1485

E-mail: yjkim@kicet.re.kr

Scheme 2. Two step synthesis method for $LiCoO_2$ through LiOH coating.

Experimental

Synthesis of Co_3O_4 nanoparticles and $LiCoO_2$ micro-particle

Co precursors were extracted from waste hard materials (WC-Co) by acid treatment and subsequently used to synthesize Co_3O_4 [1-2]. The extracted Co precursors were annealed at 500 °C for 1 h in air. During the annealing, Co precursors were oxidized to Co₃O₄ by the heat treatment at a low temperature of 500 °C in air. The extracted Co phase existed as CoOOH or Co(OH)₂. These materials are easily oxidized to Co₃O₄ at a low temperature in a NH₃ or NaOH condition [15]. First, micro-sized LiCoO₂ particles were synthesized via a double sintering method using recycled Co₃O₄. The Co₃O₄ nanoparticles were mixed with a pre-determined amount of different Li precursors such as LiOH·H₂O (molar ratio of Li/ Co = 1.00, 1.05) by grinding for 1h. The mixed powders were formed into disks at a pressure of 50 MPa for 2 minute, and were sintered at 700 °C for 5 h. Sintered disks were ground again, formed into disks under the same conditions, and sintered at 800 °C for 10 h. The LiCoO₂ powders prepared were characterized by X-ray diffraction (XRD, D/max 2500 v/pc, Rigaku, Japan) measurement using Cu Ka radiation, and scanning electron microscopy (SEM, JSM-6390, JEOL, Japan).

Synthesis of LiOH-coated Co₃O₄ and LiCoO₂ nanoparticles

The recycled Co_3O_4 nanoparticles were mixed with a predetermined amount of LiOH with different molar ratios (molar ratio of Li/Co = 1.00-10.00) to form the

coating layer for LiCoO₂ nanoparticles. Scheme 2 shows the synthetic process to obtain LiCoO₂ nanoparticles. The mixed precursors were dispersed in 20 ml of methanol, which was followed by sonochemical reaction at 20 kHz and 220 W for 20 min. They were finally washed several times to remove the byproducts such as unreacted LiOH and the dissoluted Co phase during the sonochemical reaction. The color of the LiOH-coated Co₃O₄ nanoparticles was dark gray in a molar ratio of Li/Co above 5.00. LiOH coated Co₃O₄ nanoparticles were sintered at 500 °C for 3 h to form nano-sized LiCoO₂ powders.

Results and Discussion

Preparation of Co₃O₄ powders

The zinc melt extraction process of the Co binder phase from WC-Co chips was investigated in order to establish a novel recycled waste WC-Co hard metal [4]. After the zinc melting process, the cobalt binder phase in an acid solution could be extracted to CoOOH or Co(OH)₂, which were used for the synthesis of cobaltcomponent materials as precursors. Recycled Co precursors were extracted from the waste hard metal acid solutions. It is well known that $Co(OH)_2$ with some impurities can be oxidized to Co₃O₄ at a higher temperature. While hydrolysis and oxidation are facilitated by increasing the pH, dehydration is more pronounced at higher temperatures and oxidation appears to be mostly affected by the applied oxygen partial pressure [15]. Fig. 1 shows a scanning electron microscope image and the XRD pattern of Co₃O₄ nanoparticles synthesized from Co precursors extracted from waste WC-Co chips by annealing at 500 °C for 1 h. Fig. 1(a) shows that all XRD peak positions and relative intensities of synthesized Co_3O_4 particles matched well with Co_3O_4 materials without impurities such as CoO or Co₂O₃. Fig. 1(b) shows a FE-SEM image of the as-prepared Co₃O₄ nanoparticles. The size of the bare Co₃O₄ nanoparticles was roughly 30 to 40 nm in the FE-SEM image.

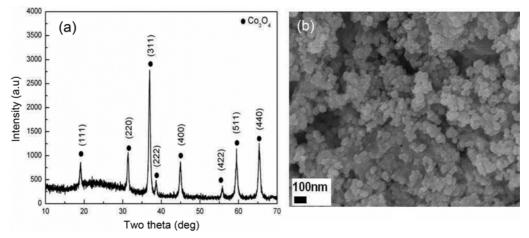


Fig. 1. (a) X-ray diffraction patterns of Co₃O₄ nanoparticles. (b) SEM image of Co₃O₄ nanoparticles.

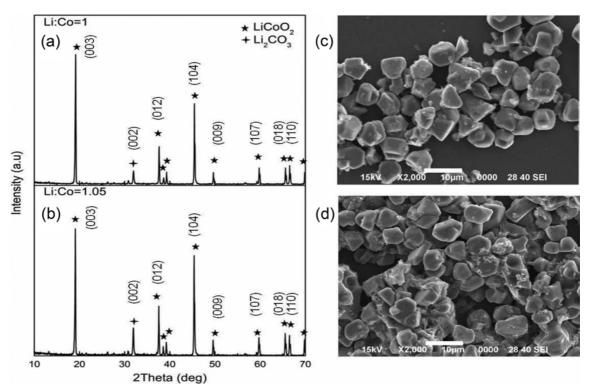


Fig. 2. X-ray diffraction patterns and SEM images of $LiCoO_2$ using $LiOH \cdot H_2O$ as the precursor prepared at 800 °C for 10 h. (a, c) Li/Co = 1.00, (b, d) Li/Co = 1.05.

Synthesis of micro sized LiCoO₂ particles

The Co₃O₄ nanoparticles prepared were used for the synthesis of LiCoO₂ particles. LiOH · H₂O was chosen as the Li precursor. The Li/Co molar ratio was controlled by applying different concentrations of LiOH · H₂O and Co_3O_4 (Li/Co = 1.00-1.05). LiCoO₂ micro-particles were synthesized by a two-step sintering process. During sintering, nucleation and growth of LiCoO₂ occurred by a thermal reaction between Co₃O₄ nanoparticles and LiOH. The nucleation and growth reaction of the LiCoO₂ powder can increase the size uniformity and density of the LiCoO₂ micro-particles [16-17]. Fig. 2(a) and (b) shows the XRD pattern of the LiCoO₂ powders prepared. The crystallinity of the LiCoO2 increased as more Li ions reacted with Co_3O_4 by diffusion. The presence of Li_2CO_3 phase was indicated that the reaction was not completed. Fig. 2(c)and (d) shows SEM images of LiCoO₂. Li ions affect the growth rate of LiCoO2. However, excess Li precursor could affect the formation of impurities such as H_2O and CO_2 that leading to the loss of Li ions [9]. Excess LiOH is decomposed to Li⁺ ions and hydroxyl groups. These hydroxyl groups are easily composed to hydrogen ions and carbon ions in air during the sintering process to form H₂O and CO₂ gas.

LiOH coated Co₃O₄ nanoparticles

A predetermined amount of $\text{LiOH} \cdot \text{H}_2\text{O}$ was added to the recycled Co_3O_4 nanoparticles to adjust the Li/Co molar ratio in the range of 1.00-10.00. Fig. 3 presents XRD patterns of LiOH reacted with Co_3O_4

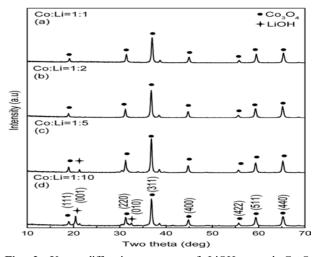


Fig. 3. X-ray diffraction patterns of LiOH coated Co_3O_4 nanoparticles prepared by the sonochemical method (20 kHz, 200 W) with different molar ratios of Li/Co. (a) Li/Co = 1.00, (b) Li/Co = 2.00, (c) Li/Co = 5.00 and (d) Li/Co = 10.00.

nanoparticles. In the case of a Li/Co molar ratio of less than 5.00 (Fig. 3(a) and (b)), only a Co₃O₄ peak was observed. However, with a Li/Co molar ratio exceeding 5.00 (Fig. 3(c) and (d)), LiOH peaks were observed with Co₃O₄ phase. These results indicate that LiOH reacted with the Co₃O₄ nanoparticles to form LiOHcoated Co₃O₄ nanoparticles. Fig. 4(a) and (b) are TEM images of LiOH coated Co₃O₄ nanoparticles with different molar ratios (Li/Co = 1 (Fig. 4(a)), Li/Co = 10 (Fig. 4(b)). In Fig. 4(b), a thickness of the LiOH coating layer of 5-7 nm is observed. The surface of the Co₃O₄ nanoparticles

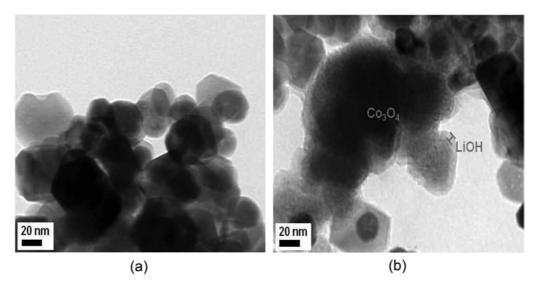


Fig. 4. TEM images (a) LiOH-coated Co_3O_4 nanoparticles (Li/Co = 1.00) and (b) LiOH-coated Co_3O_4 nanoparticles (Li/Co = 10.00) deposited from an ethanol dispersion of the nanoparticles on an amorphous carbon-coated copper grid and dried at room temperature.

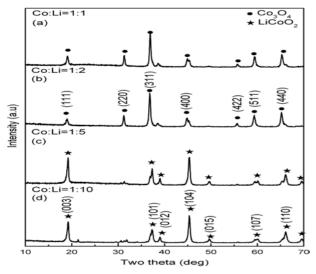


Fig. 5. X-ray diffraction patterns of $LiCoO_2$ nanoparticles (Li/ Co = 1.00-10.00) prepared at 500 °C for 3 h.

reacted with LiOH continuously due to the hydroxyl radical oxidation of LiOH \cdot H₂O under sonochemical conditions [18-19]. The sonochemical method is widely used for the degradation of oxidized particles, particle agglomeration and surface modification. These reactions are attributed to the surface coating due to the cavitation at high frequency by collapse of bubbles in the liquid phase [20].

Synthesis of LiCoO₂ nanoparticles

Nano-sized LiCoO₂ could be synthesized by a chemical surface coating reaction with LiOH at a low temperature of about 500 °C. Fig. 5 shows XRD patterns of LiCoO₂ nanoparticles with different molar ratios (Li/Co = 1.00-10.00) fabricated by sintering at 500 °C for 3 h. For the LiCoO₂ nanoparticles obtained with a Li/Co molar ratio less than 5.00 (Fig. 5(a) and (b)), only a Co₃O₄ peak was observed. However, with a Li/Co

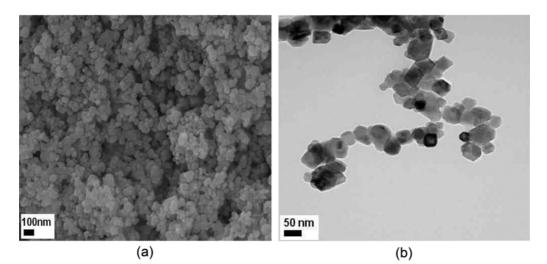


Fig. 6. (a) SEM and (b) TEM images of $LiCoO_2$ nanoparticles prepared at 500 °C for 3 h.

molar ratio exceeding 5.00 (Fig. 5(c) and (d)), the Co_3O_4 peak decreased with an increasing Li/Co ratio and LiCoO₂ peaks were indexed. These results indicate that the Li ions move into Co_3O_4 via thermal diffusion during oxidation at high temperature [21]. Diffusion of Li ions was believed to lead to the formation of LiCoO₂ nanoparticles. Fig. 6 shows SEM and TEM images of the LiCoO₂ nanoparticles obtained by sintering at 500 °C. Their sizes were about 35-45 nm, which are similar to the size of the Co_3O_4 nanoparticles. A key advantage of this process is that it allows the synthesis of nano-sized LiCoO₂ at a lower temperature.

Conclusions

In conclusion, LiCoO2 particles were synthesized using recycled Co precursors extracted from a waste hard metal acidic solution. Nano-sized LiCoO2 particles were synthesized from LiOH-coated Co₃O₄ with different Li/Co molar ratios. A LiOH layer is observed as the LiOH · H2O is increased due to the collapse of cavitation bubbles during application of the sonochemical method which were sintered at a lower temperature (500 °C) than the usual synthetic process. Micro-sized LiCoO₂ particles were prepared by a sintering reaction with different Li/Co molar ratios. The particle size of the LiCoO₂ microparticles was 6-7 μ m (Li/Co = 1.00) and 8-9 μ m (Li/Co = 1.05). In this study, we have investigated the synthesis of LiCoO₂ with different concentrations of Li using recycled Co phase as a precursor. The proposed synthetic method using recycled Co precursors is expected to serve as an effective material recycling system producing high quality cathode materials for lithium rechargeable cells.

Acknowledgement

This work was supported by "Policy R&D Program" funded by the Korea Institute of Ceramic Engineering and Technology, Korea.

References

- S. Venkateswaran, W.D. Schubert, B. Lux, M. Ostermann, B, Kieffer. Int J Refract Met Hard Mater 14 (1996) 263-270.
- J.C. Lin, J.Y. Lin, S.P. Jou, Hydrometallurgy 43 (1996) 47-61.
- 3. T. Madhavi Latha, S. Venkata chalam, Hydrometallurgy 22 (1989) 353-361.
- J.H. Pee, Y.J. Kim, N.E. Seong, W.S. Cho, K.J. Kim, Mater. Sci. Eng. (2011) in press.
- M. Tabuchi, K. Ado, H. Kobayashi, H. Sakaebe, H. Kageyama, C. Masquelier, M. Yonemura, A. Hirano, R. Kanno, J. Mater. Chem. 9 (1999) 199-204.
- 6. J.M. Tarascon, M. Armand, Nature 414 (2001) 359-367.
- L. Li, W.H. Meyer, G. Wegner, M. Wohlfahrt-Mehrens, Adv. Mater. 17 (2005) 984-988.
- X. Qian, X, Cheng, Z.Wang, X. Huang, R. Guo, D. Mao, C. Chang, W. Song, Nanotechnology 20 (2009) 115608 (7pp).
- Y. Zhou, C. Shen, H. Li, Solid State Ionics 146 (2002) 81-86.
- Y.K. Sun, I.H. Oh, S.A. Hong, J. Mater. Sci. 31 (1996) 3617-3621.
- S.G. Kang , S.Y. Kang, K.S. Ryu, S.H. Chang, Solid State Ionics 120 (1999) 155-161.
- V.G. Pol, A. Gedanken, J. Calderon-Moreno, Chem. Mater. 15 (2003) 1111-1118.
- Z. Zhong, Y. Mastai, Y. Koltypin, Y. Zhao, A. Gedanken, Chem. Mater. 11 (1999) 2350- 2359.
- D. Jugoviæ, M. Mitriæ, N. Cvjetiæanin, B. Janæar, S. Mentus, D. Uskokoviæ, Solid State Ionics 17 (2008) 415-419.
- 15. T. N. Ramesh, J. Solid State Chem. 183 (2010) 1433-1436.
- M. Zou, M. Yoshio, S. Gopukumar, J.I. Yamaki, Chem. Mater. 15 (2003) 4699-4702.
- T. Nakamura, A. Kajiyama, Solid State Ionics 123 (1999) 95-101.
- M.A. Beckett, I. Hua, J. Phys. Chem. A 105 (2001) 3796-3802.
- H.M. Hung, M.R. Hoffmann, J. Phys. Chem. A 103 (1999) 2734-2739.
- 20. K.S. Suslick, Science 247 (1990) 1439-1445.
- 21. S. Mizuo, H. Higuchi, Jpn, J. Appl. Phys. 20 (1981) 739-744.