JOURNALOF

Ceramic Processing Research

Comparision of Zn_2TiO_4 and rutile TiO_2 photocatalysts for H_2 production under UV and near-visible light irradiation

Pramod H.Borse^a, C. R. Cho^b, K. T. Lim^c, T. E. Hong^d, E. D. Jeong^d, J. H. Yoon^d, S. M. Yu^d and H. G. Kim^{d,*}

^aCentre for Nanomaterials, International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O., Hyderabad, AP, India

^bDepartment of Nano Fusion Technology, Pusan National University, Pusan 609-735, Korea

^cDepartment of Imaging System Engineering, Pukyong National University, Busan 609-735, Korea

^dBusan Center, Korea Basic Science Institute, Busan 609-735, Korea

Zn₂TiO₄ a spinel-type structure photocatalyst, was synthesized by a solid-state reaction method, and obtained as a single phase in the temperature range of 900-1200 °C. The average particle size for case of the as-synthesized Zn₂TiO₄ sample, sintered at 1200 °C was found to be 5 μ m, whereas it lay in the range of 0.5-2 μ m for the case of TiO₂ calcined at 650 °C. The band gap of Zn₂TiO₄ and TiO₂ (rutile) samples determined by UV-Vis diffuse reflectance spectra (DRS) was 3.10 eV (400 nm). The Zn₂TiO₄ sample calcined at 1200 °C exhibited a higher hydrogen production rate than that of rutile TiO₂ from a watermethanol mixture under UV ($\lambda \ge 210$ nm) and near-visible ($\mu \ge 400$ nm) light irradiation. In spite of having the same bandgap energy, the photocatalytic activity of Zn₂TiO₄ was found to be higher than that of rutile TiO₂, manily because of its more negative conduction band edge than rutile TiO₂.

Key words: Zn₂TiO₄, Rutile TiO₂, Photocatalysis, Hydrogen production, Visible light.

Introduction

Photocatalysts convert solar energy into useful chemical energy, such as hydrogen gas [1-3] as an alternative green fuel. Thus production of hydrogen by making use of semiconductor photocatalysts, has recently received much attention [4-7]. In general, to develop a high efficiency photocatalyst for hydrogen production, the semiconductor material should fulfill various requirements, such as (i) a proper band gap position; (ii) bandgap energy; (iii) longterm stability, (iv) good optical property etc. According to Matsumoto [8], Zn₂TiO₄ is a fascinating candidate having an ideal bandgap energy (ca. 3.1 eV), as well as the band positions for photo-reduction of water under UV and near-visible light. Interestingly its band gap (ca. 3.1 eV) [9] is the same as rutile TiO_2 . In spite of such a similarity, to the best of our knowledge, there is no report on comparison of the photocatalytic activities of the two systems. It can be predicted that the photocatalytic activity of rutile TiO_2 may be lower than the activity of Zn_2TiO_4 , as the conduction band edge of rutile TiO₂ is located very near to the reduction potential of hydrogen [8]. In this paper we have carried out a comparative study of photocatalytic properties of Zn₂TiO₄ and rutile TiO₂ systems under UV and near-visible light irradiation.

Here, we synthesized Zn_2TiO_4 by a solid-state reaction method, and TiO_2 by a sol-gel process. Further structural and optical characterization was carried out with an objective of a photocatalytic application of these systems. A detailed study was carried out to compare the photocatalytic activity of the two materials for hydrogen production from a water-methanol mixture under UV/ near-visible light irradiation. In addition, a direct comparison of the computed electronic structures of the two systems is a salient feature of the present work.

Experimental

Zn₂TiO₄ samples were synthesiszed by a conventional solid-state reaction (SSR) method. Stoichiometric amounts of ZnO (99.9%, Aldrich) and TiO₂ (99%, Aldrich) were mixed and ground in methanol. The pelletized powders were calcined at 700-1300 °C for 4 h in a static furnace. On the other hand, for the purpose of comparison, an amorphous TiO₂ precursor (ATP) sample was also prepared by a sol-gel method (SGM) [10]. Thus 10 ml of titanium isoproxide Ti(OCH(CH₃)₂)₄ (97.0%, Aldrich) was dissolved in 50 ml of ethyl alcohol and then 3 ml of aqueous ammonium hydroxide solution were added. A homogeneous sol or colloidal solution was obtained after a few hours of vigorous stirring. TiO₂ nanoparticles with anatase and rutile phase structure were formed by heating these ATP samples in air at various temperatures in the range of 300-650 °C for 4 h in an electric furnace.

The Zn_2TiO_4 and TiO_2 samples prepared by the con-

^{*}Corresponding author:

Tel:+82-51-974-6104

Fax: +82-51-974-6116

E-mail: hhgkim@kbsi.re.kr

ventional SSR methods were characterized by an X-ray diffractometer (Mac Science Co., M18XHF). X-ray diffraction (XRD) results were compared with the Joint Committee Powder Diffraction Standards (JCPDS) data for phase identification. The band gap energy and optical properties of the as-prepared materials was measured by a UV-visible diffuse reflectance spectrometer (Shimadzu, UV 2401). The morphology was determined by scanning electron microscopy (SEM, Hitachi, S-2460N) and high-resolution transmission electron microscopy (HR-TEM, Philips, CM 200).

The electronic band-structure calculation of Zn_2TiO_4 was performed using the WIEN 97 package based on the full potential linearized augmented plane wave method [11]. This method uses the generalized gradient approximation, an improvement to the local spin-density approximation within density functional theory that is known to be an efficient and accurate scheme for solving the many-electron problem of a crystal. The crystallographic parameters for the calculation including lattice parameters and atomic positions were adopted from the literature [12].

The photo-reduction reactions of water were carried out at room temperature in an upper-irradiation type Pyrex reaction vessel hooked up into a closed gas circulation system. Photocatalytic reduction was carried out by irradiating suspended powders using a Hg-arc lamp (500W) equipped with a UV-visible light irradiation. The H₂ evolution was examined in an aqueous methanol solution (distilled water 80 ml and CH₃OH 20 ml) by stirring 0.3 g of the catalyst loaded with 0.2 wt% Pt. Before photocatalytic reactions, all the catalysts were loaded with 0.2 wt% Pt a using conventional impregnation method using aqueous PtCl₂. The concentration of the reaction product (H₂) was determined by a gas chromatograph equipped with a thermal conductivity detector (a molecular sieve 5-Å column and Ar carrier).

Results and Discussion

Structural characterization of Zn_2TiO_4 and TiO_2 samples were carried out to compare the crystallization behaviors of the samples prepared at various calcination temperatures. Fig. 1 shows the XRD patterns of Zn_2TiO_4 samples prepared by sintering the mixed precursor (ZnO and TiO₂) at various temperatures. The samples formed above 800 °C exhibited an inverse spinel Zn_2TiO_4 structure with a lattice constant of 8.48 Å, and space group Fd3m [13]. The sample calcined at low temperatures (700 °C) showed some unknown impurity phases. The formation of Zn_2TiO_4 was observed in the samples calcined between 800 and 1300 °C. The study clearly reveals the temperature-dependent crystallization behavior of Zn_2TiO_4

Further, the structural characterization of TiO_2 was studied in detail as seen in Fig. 2. Here, the X-ray patterns show the crystallization behavior of TiO_2 as a function of the calcination temperature for the amorphous TiO_2 precursor (ATP) sample. The TiO_2 precursor sample did not show

Fig. 1. XRD patterns of Zn_2TiO_4 samples sintered at various temperatures for 4 h; (a) 700 °C, (b) 800 °C, (c) 900 °C, (d) 1000 °C, (e) 1100 °C, (f) 1200 °C, (g) 1300 °C.

Fig. 2. XRD patterns of TiO₂ samples calcined at various temperatures for 4 h; (A) 300 °C, (B) 350 °C, (C) 400 °C, (D) 450 °C, (E) 500 °C, (F) 550 °C, (G) 650 °C.

(Fig. 2(A)) any XRD peaks indicating that it was amorphous solid. Crystalline TiO_2 grew with an increase in the calcination temperature. The crystallization behavior of TiO_2 in the ATP sample was very similar to our previous report [10] and showed a well-crystallized anatase phase at 500 °C. But at higher temperatures (\geq 550 °C) it turned to the thermodynamically more stable rutile phase.

Fig. 3 shows scanning electron microscopy (SEM) images of TiO₂ and Zn₂TiO₄ samples. The TiO₂ sample displayed the existence of more or less spherical particles with a size range of 0.5-2 μ m. In contrast, the Zn₂TiO₄ sample displayed a well-crystallized morphology with the grain size lying in the 5-10 μ m size range. Such larger particles are expected due to the high temperature-induced particle growth in this metal oxide.

Fig. 4 shows UV-vis diffuse reflectance spectra of Zn_2TiO_4 samples sintered at different temperatures (1100, 1200, 1300 °C) and for a TiO₂ (rutile) sample. Fig. 4 clearly indicates a similarity in the absorption edge of these systems.

Fig. 3. SEM images of (A) TiO_2 calcined at 650 °C for 4 h; and (B) Zn_2TiO_4 sample calcined at 1200 °C for 4 h.

Fig. 4. UV-Vis diffuse reflectance spectra of various samples of (a) Zn_2TiO_4 -1100 °C, (b) Zn_2TiO_4 -1200 °C, (c) Zn_2TiO_4 -1300 °C and (d) TiO_2 -650 °C indicating the similarity in the band gap of these systems.

From these spectra, we estimated the band gap energy of these materials. TiO₂ (rutile) showed a sharp edge at 400 nm, while Zn_2TiO_4 showed two absorption edges; the main edge at 400 nm and a shoulder around 400-500 nm. Thus, it can be concluded that both Zn_2TiO_4 and TiO_2 display a similar band gap of ~3.10 eV, This is also shown in Table 1.

Fig. 5 shows the total density of states (DOS) for Zn_2TiO_4 and rutile TiO₂, where the top of the valence band was set to 0 eV. The muffin-tin radii for Zn, Ti, and O were chosen to be 2.2, 2.0, and 1.8, respectively, in this calculation. The convergence parameter of *RK*max was set to 8.0. The calculation was iterated with a charge convergence criteria of 0.0001. The atomic coordinates for the WIEN97 calculation were adopted from the literature [14]. Similarly, the DOS was calculated for rutile TiO₂. Fig. 5 give a direct qualitative comparison of the DOS of these systems. Specifically DOS of Zn_2TiO_4 implies

Table 1. Photocatalytic H_2 production from methanol-water solution over 0.2 wt% Pt/ZnTiO₄ and 0.2 wt% Pt/TiO₂ samples

Catalyst	Bandgap– Energy Eg (eV)	H ₂ evolution (mmol/gcat·h)	
		UV light irradiation $(\lambda \ge 10 \text{ nm})$	Visible light irradiation $(\lambda \ge 400 \text{ nm})$
0.2 wt% Pt/Zn ₂ TiO ₄ (1200 °C)	3.10	140	46
0.2 wt% Pt/TiO ₂ (650 °C)	3.10	11	2

Fig. 5. Theoretically calculated total density of states (DOS) for Zn_2TiO_4 and rutile TiO_2 . The top of the valence band was set to 0 eV.

that the valence band is a mixture of the O 2p, Zn 2p and Ti 2p orbitals. The conduction band is comprised of the Zn 3d orbital. It is clear that titania also exhibits a similar DOS, except for the fact that there is no effect of the Zn-states in the conduction band. Effectively, the Zn states affect the conduction band edge position of Zn₂TiO₄ making it a better photocatalyst. From the above study, it can be understood that both oxide systems show very similar optical properties.

Among the as-synthesized samples, we investigated the photocatalytic hydrogen production from a methanolwater solution using Zn_2TiO_4 and rutile TiO_2 samples under UV ($\lambda \ge 210$) and visible ($\lambda \ge 400$ nm) light irradiation. Table 1 shows the results of the H₂ evolution as well as the respective band gaps of the samples calculated from the respective spectra. Two samples showed photocatalytic activity for hydrogen production from a methanolwater solution under UV light irradiation ($\lambda \ge 210$). The Zn_2TiO_4 photocatalyst showed a higher photocatalytic activity than that of rutile TiO₂ under both UV and visible light irradiation. The Zn_2TiO_4 photocatalyst showed a H₂ production as high as 46 mmol/gcat-h under visible light irradiation ($\lambda \ge 400$ nm). But, the rutile TiO₂ photocatalyst showed a trace amount of H₂ production.

The photocatalytic quantum yield (QY) of any photocatalyst is an important parameter to understand and compare its efficacy. It can be calculated using the following equation [15, 16]:

where I_1 is the blank light intensity, I_2 is the scattered light intensity, I_3 is the photocatalyst light intensity, A_1 is the lighted area of the photo reactor, A_2 is the area of the sensor face, and 14.757 is the mole number of photons with $\lambda \ge 400$ nm emitted from the lamp for 1 h. The results of the photocatalytic QY calculation in Table 1, indicate that Zn_2TiO_4 system shows 23 times more QY than rutile TiO_2 system. This is an important observation of the present investigation.

Fig. 6 shows the bandgap positions of Zn₂TiO₄ and rutile TiO₂ photocatalysts reported by Matsumoto [8] and its mechanism for photocatalytic hydrogen production from a methanol-water solution. Although the two samples have the same bandgap energy, the conduction band of Zn_2TiO_4 is located at a more negative position than that of rutile TiO_2 as shown in Fig. 6(A). That is, in the case of Pt/Zn₂TiO₄, an electron excited to the conduction band has a reduction potential more suited to reduce an H⁺ ion, and a hole in the valence band also has a lower oxidation potential for CH₃OH degradation to CO₂. The figure clearly demonstrates this fact for Zn₂TiO₄ an further compares it with the case of rutile TiO_2 [17]. Therefore, Zn₂TiO₄ is a potential photocatalyst for photocatalytic reactions which require a higher reduction potential as well as a lower oxidation potential.

Fig. 6. A. The bandgap positions of Zn_2TiO_4 and rutile TiO_2 photocatalysts. B. The mechanism for photocatalytic hydrogen production from a methanol-water solution.

Conclusions

Spinel-type zinc ferrite material, Zn_2TiO_4 was successfully synthesized by a solid state reaction method and studied together with rutile TiO_2 made by a sol-gel synthesis. In spite of having the same bandgap energy, the photocatalytic activity for hydrogen production under UV and near-visible light over Zn_2TiO_4 was found to be higher than that of rutile TiO_2 . Comparatively a more negative conduction edge position of Zn_2TiO_4 than rutile TiO_2 is mainly responsible for this better behavior of the Zn-containing system. Thus, Zn_2TiO_4 can be considered as a better candidate for photocatalytic reactions which require a higher reduction potential as well as a lower oxidation potential viz. for photocatalytic hydrogen production.

Acknowledgements

The authors acknowledge the support of KBSI grant T30320, Hydrogen Energy R&D Center, Korea. One of the authors (PB) acknowledges the support of Director ARCI, (DST lab) Hyderabad, India.

Reference

- 1. J.S. Lee, Catal. Surv. Asia, 9 (2005) 217-227.
- 2. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38 (2009) 253-259.
- 3. F.E. Osterloh, Chem. Mater. 20 (2008) 35-54.

- H.G. Kim, D.W. Hwang and J.S. Lee, J. Am. Chem. Soc. 126 (2004) 8912-8913.
- K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc. 127 (2005) 8286-8287.
- H.G. Kim, P.H. Borse, W. Choi and J.S. Lee, Angew. Chem. Int. Ed. 44 (2005) 4585-4589.
- 7. J.S. Jang, D.W. Hwang and J.S. Lee, Catal. Today 120 (2007) 174-184.
- 8. Y. Matsumoto, J. Solid State Chem. 126 (1996) 227-234.
- T. Sreethawong, Y. Suzuki and S. Yoshikawa, J. Solid State Chem. 178 (2005) 329-338.
- J.S. Jang, H.G. Kim, S.M. Ji, S.W. Bae, J.H. Jung, B.H. Shon and J.S. Lee, J. Solid State Chem. 179 (2006) 1067-1075.
- P. Blaha, K. Schwarz and J. Luitz, WIEN97, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties, Techn. Universität Wien,

Wien, Austria, (1999).

- J.L. Shay and J.H. Wernick, *Ternary Chalcopyrite* Semiconductor: Growth, Electronic Properties and Applications (Pergamon, Oxford, 1974).
- R.B. Rankin, A. Campos, H. Tian, R. Siriwardane, A. Roy, J.J. Spivey, D.S. Sholl and J.K. Johnson, J. Am. Ceram. Soc. 91 (2008) 584-590.
- 14. Chunfei Li, Y. Bando, M. Nakamura, N. Kimizuka and H. Kito, Materials Research Bulletin 35 (2000) 351-358.
- B.W. Bae, P.H. Borse, S.J. Hong, J.S. Jang, J.S. Lee, E.D. Jeong, T.E. Hong, J.H. Yoon and H.G. Kim, J. Korean Phys. Soc. 51 (2007) S22-S26.
- D.W. Hwang, H.G. Kim, J.S. Lee, J. Kim, W. Li and S.H. Oh, J. Phys. Chem. B 109, (2005) 2093-2102.
- A. Fujishima, K. Hashimoto and T. Watanabe, TiO₂ Photocatalysis: Fundamentals and Applications (BKC, Inc.: Tokyo, 1999), p. 126.