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Voronoi diagram as an analysis tool for spatial properties for ceramics
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While research in ceramics has focused on physical experiments, the need for computational aids is increasing more and mo
Among several computer simulation tools for the design and analysis of various aspects of ceramics, the Voronoi diagram
introduced in this paper. The Voronoi diagram is a powerful tool in computational geometry which provides all spatial
information among geometric objects in a system with an efficient data structure. In this paper, we present the properties o
Voronoi diagrams and introduce various applications appropriate for research in ceramics. 
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Introduction

Until recently, major approaches in material science
research, including ceramics, have been based mainly
on experiments using physical instruments. While this
trend is, and will continue to be, the main-stream of
research in ceramics, computer simulation has started a
new paradigm in material science research.

Suppose that we have a powder consisting of several
particles. In many cases, the spatial distribution of
particles in various conditions is one of the major
research interests in ceramics. The shapes of grains are
also important factors to be considered in the design
and manufacturing of ceramics [2, 7].

Even though there are several methods to analyze the
spatial characteristics of the particles or grains, physical
experiments usually use scanning electron microscopy
to take photographs of the material surface. The pictures
are then visually analyzed to identify and describe new
phenomena. However, physical experiments followed
by visual inspections are frequently costly and time
consuming. Besides, this approach can be rather
imprecise. 

Computer simulation, on the other hand, can replace
physical experiments if the environment of the experi-
ment can be appropriately modeled. Simulation is
usually less expensive and can produce results faster. If
the model is constructed correctly, the results can be
very close to the real experiment. Besides, the results
are usually produced quantitatively. 

Among various simulation techniques in material
science, in this paper we will introduce the Voronoi
diagram to analyze the spatial characteristics of a
material so that the analysis can be easily reflected in

the material design and manufacture. 

Voronoi diagram

Suppose that a finite number of distinct points, whi
we call generators, are given in a space. If we allocat
all locations in this space with the closest member
the generators, the result is a partition of the space 
a set of regions. Such a partition is called the Voron
diagram of given point set, and each region is called
Voronoi region [1, 9]. 

Figure 1 illustrates an example of a Voronoi diagra
for six point-generators. As shown in the figure, 
location Q in a region corresponding to generator P1 is
always closer to P1 than Pi, i = 2, 3, 4, 5, and 6. In this
example, a Voronoi region, VR1, is a polygon consis
ing of all such locations in the plane. The distance
the ordinary Euclidean distance, in other words, d(q1,
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E-mail: dskim@hanyang.ac.kr Fig. 1. Voronoi diagram of a point set in a plane.
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q2)=  where q1=(x1, y1) and q2=(x2,
y2). Note that a Voronoi region is always a bounded
convex polygon except at the exterior generators. 

In Fig. 3, the larger circle is the largest empty circle
computed from the point set Voronoi diagram and the
smaller circle corresponds to the largest open space
existing among the particles with the prescribed spatial
distribution. Note that the largest open space can be
easily found from the largest empty circle by sub-
tracting the radius of the particle. Once the Voronoi
diagram is given, the time to find the largest circle is
linear with respect to the number of particles since the
Voronoi diagram is usually stored in an efficient data
structure such as a Winged-Edge data structure. There-
fore, the integral and global properties, such as the
distribution of open spaces in a given material, can also
be easily computed by the fast computation of the
distribution of empty space among the particles. 

If a Voronoi diagram is given, it is also possible to
compute other important geometric properties without
much difficulty. For example, the time to compute the
average number of boundaries between grains is also
linear with respect to the number of particles. Similarly,
the grain with the maximum or minimum number of

grain boundaries can also be easily located. 
Suppose that we want to find one or more pat

through which another particle can pass freely witho
touching given particles. Such paths can be ea
identified once the Voronoi diagram is given and stor
in Winged-Edge data structure. Among these paths, 
with the minimum or maximum travel distance can b
computed without much computational effort. Figure
is an example of such a diagram showing a pa
through which the largest particle can pass free
between two sites in the powder distribution. 

Suppose that a material is polycrystalline, meani
that it consists of many individual crystals that a
randomly distributed and oriented. If a picture of th
material surface is taken by an electron microscope
is then possible to estimate where and when 
crystallization of each grain started on the surface. T
type of problem is called the generator recognitio
problem in computational geometry [9]. Assuming th
the grain boundaries are potential Voronoi edges, 
locations of generator points can be computed. The
fore, if the crystallization process is assumed as a po
set Voronoi diagram, the seed points at which t
crystallization started can be found. The distribution 
these seed points can be very useful information. 

Computation of a Voronoi diagram

There have been several reports of research to com
the Voronoi diagram of a point set. They can be cate
rized as the following approaches: incremental, divid
and-conquer, plane sweep, lift-up, and flip. Amon
these approaches, the lift-up approach is significant d
to its capability to incorporate the error-free compu
ation of the diagram using exact computation [4, 9].

It has been found that a Voronoi diagram can 
computed in O(n log n) time where n is a number of
points [10]. Note that we use a symbol O(g(n)) to
indicate the time complexity of our algorithm to giv
an upper bound of the time taken by the algorithm fo
given number of input data [3]. For example, a Voron

x1 x2–( )2 y1 y2–( )2+

Fig. 2. Particles distributed on a plane.

Fig. 3. Point set Voronoi diagram. The larger circle is the largest
empty circle of point set and the smaller circle corresponds to the
largest open space among particles.

Fig. 4. The largest channel.
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diagram of 10,000 points can be computed and stored
in Winged-Edge data structure in less than 2 or 3
seconds with a Pentium III with 128 MB main memory
[8]. 

Conclusions

In this paper, we have introduced the possibility of
the Voronoi diagram to analyze the spatial properties of
a set of particles. Especially, when the particles can be
modeled by circles with identical radii, the problem can
be precisely approached by the Voronoi diagram. The
Voronoi diagram of point set can be computed very
rapidly by any of several algorithms. For future work, it
is necessary to find appropriate problems that can be
solved using Voronoi diagrams. 
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