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An efficient numerical method for incorporating phase changes in ceramic drying
process

Y.T. Keum* and K.H. Auh
Ceramic Processing Research Center (CPRC), Hanyang University, Seoul 133-791, Korea

The numerical simulation of ceramic drying process is difficult as the heat and moisture movements in green ceramics caus
by temperature gradients, moisture gradients, conduction, convection and evaporation should be considered. In the finit
element formulation for solving temperature and moisture distributions during the drying process, the internally discontinuous
interface elements are employed to avoid the numerical divergence problem arising from sudden changes in heat capacity
phase zones. In order to show the reliability of the numerical method proposed in this study, the drying process of a ceram
electric insulator is simulated and the results are compared with those of other investigators.

Key words: Phase Change, Internally Discontinuous Element, Ceramic Drying Process, Ceramic Electric Insulator, Finite Elemen
Method.

Introduction

Computer-aided numerical methods like FEM, FDM,
and BEM are widely used to evaluate mechanical char-
acteristics as well as to optimize processing variables.
Using the numerical methods, the mechanical charac-
teristics of ceramics affected by temperature and mois-
ture movements in the drying process can be easily
evaluated.

Variations of temperature and moisture in the drying
process change the volume and induce the hygro-
thermal stress. The heat and moisture transfer and the
associated hygro-thermal stress are fundamental issues
in heat-moisture-stress problems. However, in finding
temperature profile and moisture distribution in green
ceramics during the drying process using FEM, the
numerical divergence problem cannot be avoided due
to the changes in material properties in the dual phase
area.

The interrelation between heat and moisture transfer
in porous materials was established by Luikov who
proposed a two-term relationship for the non-isother-
mal moisture diffusion. The development of the theory
of transport phenomena in porous media has been
summarized by Luikov [1-3] and Whitaker [4]. The
effects of the liquid and vapor transport, heat transport,
pressure gradient, and capillary flow were investigated
by De Vries et al. [5, 6] and a set of coupled diffusion
equations of temperature and moisture contents was
proposed. Whitaker [4] analyzed the heat, mass, and

momentum in porous media and Comini et al. [7]
performed numerical analysis of the two-dimension
problem involving heat and mass transfer. The valid
of this methodology in timber was verified by Thoma
et al. [8] through the comparison of experimental an
numerical results. Dhatt et al. [9] modeled a concrete
drying process and Gong et al. [10] used the finite
element method in the concrete drying process a
investigated heat transfer velocity and moisture red
tion velocity. The stress distribution caused by heat a
moisture transfer was analyzed by Lewis et al. [11]
using the finite element method in the drying proce
of a brick, a ceramic electric insulator, and a basem
foundation. The hygro-thermal stress caused by h
and moisture transfer in composite materials was a
analyzed by Sih et al. [12].

In this study, a numerical method solving the tw
phase problem in the finite element analysis f
temperature and moisture distributions during t
drying process of ceramics is introduced. For t
verification of the numerical approach, the dryin
process of a ceramic electric insulator is simulated. 

Finite Element Formulation

The rate of temperature and moisture transfer in
body is caused by their flux gradients as well as sou
rates [1-3]:

 (1)

 (2)

where T is temperature, W is the moisture, C is t

C
∂T
∂t
------=−∇ j q⋅ +I·q=∇ KM ∇W⋅ K T ∇T⋅+( )⋅ +I·q

∂W
∂t

--------=−∇ j m⋅ =∇ AM ∇W⋅ AT ∇T+Ag Wg⋅⋅+( )⋅*Corresponding author: 
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bulk specific heat per unit volume, jq is the heat flux
vector, jm is the moisture flux vector, iq is the heat
source function, KM  is the diffusion-thermal coefficient
tensor, KT is the heat conductivity tensor, AM  is the
moisture diffusivity tensor, AT is the thermal diffusion
coefficient tensor, and Ag is the forced flux coefficient
tensor. Figure 1 is a schematic diagram of the heat and
moisture transfer problem. During the drying process
of a ceramic product, the flux and source of heat and
moisture as well as traction are respectively subjected
to simultaneously existing dried and wetted zones in
the ceramic body. The problem definition provides the
boundary conditions expressed as follows:

 
T=Ta on S1 (3)

 on S2

 (4)

W=Wa on S3 (5)

 on S4 (6)

  (7)

  (8)

where Ta is a prescribed temperature on the boundary
S1, j q is heat flux on the boundary S2, Wa is a
prescribed moisture on the boundary S3, jm is moisture
flux on the boundary S4, kq is a thermal conductivity, km

is moisture conductivity, n is an outward normal vector
on the surface of the boundary, αq is a convective heat
transfer coefficient, αm is a convective moisture transfer
coefficient, [?]ε is a ratio of the vapor diffusion
coefficient to the total diffusion coefficient of moisture,
[?]λ is a heat of phase change, [?]δ is a thermo-
gradient coefficient, and  is a boundary of control
volume R. Eq. (3) and Eq. (5) represent boundary
conditions on the portion of the material boundary
where constant temperature and constant moisture are
prescribed, respectively. Eq. (4) and Eq. (6) also
represent those portions on the boundary subjected to
heat and moisture flux. Eq. (4) and Eq. (6) can be
rewritten in the compact form as follows:

 on S2 (9)

 on S4 (10)

where

  (11)

  (12)

  (13)

  (14)

  (15)

  (16)

At the evaporation temperature during the heat a
moisture transfer, a phase change phenomenon oc
such that the moisture within the material is liquefie
or vaporized and two phases exist simultaneously. 
analyze effectively the heat and moisture movin
boundary problem during the phase transition proc
in an element, energy conservation is considered.
schematic view of the heat and moisture movin
boundary problem in the interface between the dri
and wetted zones is shown in Fig. 2. As the latent h
of evaporation in the interface is due to the differen
in heat flux between the dried and wetted zones, 
energy conservation equation in the interface betwe
the dried zone and the wetted zone can be written
follows: 

 (17)

where L is the latent heat of evaporation, W0 is the
resident moisture content, X is the position of the
interface, nds is a unit normal vector in phase chang
zone, j qd is a heat flux vector in dried zone, and j qs is a
heat flux vector in the wetted zone.

Defining the temperature T, moisture W, temperatu
gradient , and moisture gradient  in a finit
element as follows: 

(18)

kq∇Tn+j q+αq T Ta–( )+ 1 ε–( )αmλ W Wa–( )=0

km∇Wn+j m+kmδ∇Tn+αm W Wa–( )=0

S1YS2=∂R

S3YS4=∂R

∂R

kq∇Tn+j q
*=0

km∇Wn+j m
* =0

j q
* =Aq T Ta–( )+Aε W Wa–( )+j q

j m
* =Aδ T Ta–( )+Am W Wa–( )+j m−

kmδ
kq

---------j q

Aq=αq

Aε= 1 ε–( )αmλ

Aδ=−
kmδαq

kq

---------------

Am=αm−
1 ε–( )αmkmλδ

kq

---------------------------------

L W0X
· j m+( ) nds= j qd j qs–( ) nds⋅ ⋅

∇T ∇W

T= N〈 〉 T{ }

Fig. 1. Schematic view of heat and moisture transfer problem.

Fig. 2. Schematic view of heat and moisture moving bound
problem in the interface.
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(20)

(21)

where <N> denotes an appropriate shape function, {T}
is a nodal temperature vector, {W} is a nodal moisture
vector, and [B] is a differential matrix of shape
function, the finite element equations can be expressed
as follows:

 (22)

where the matrices including the conductivity terms CT

and CM, the stiffness terms KTT, KTM, KMT and KMM,
and the force terms FT and FM are called heat capacity
matrix, stiffness matrix and force vector, respectively.

If there exists two phases in a finite element, the
numerical divergence happens because of the change in
material properties, especially heat capacity. To avoid
this problem, internally discontinuous, isoparametric
elements [13] are introduced as shown in Fig. 3. There
are 4 sorts of elements according to the state of phases
in an element. Because the change in temperature in
the quadrilateral element is assumed to be linear, the
interface can be expressed as a straight line across the
element. When the interface passes through the element
sides at p and q, as shown in Fig. 3(a), the x-coordi-
nates of point p and point q are respectively calculated
as follows:

(23)

(24)

where Te−0.5∆Tf ≤ T12≤ Te+0.5∆Tf is the transition
temperature separating zone 1 and zone 2, Te is the
phase transition temperature, and ∆Tf is the temper-
ature width of the phase transition zone, as shown
Fig. 4. In a similar fashion, equations such as Eq. (2
and Eq. (24) can be used to find the y-coordinates
point p and point q, yp and yq , respectively.

The heat capacity in the discontinuous element c
be computed by superimposing the difference in h
capacity of different zones as follows:

 (25)

where R2 is a region of zone 2 and DC12=C2-C1 is the
difference in heat capacity between zone 1 and zon
as seen in Fig. 3(a). The second term in Eq. (25) can
changed at the centroid (xr, yr) of zone 2 as follows:

(26)

where AR2 is the area of R2 and (sr, tr) is th
coordinate of a centroid of the isoparametric eleme
When R2 is a quadrilateral or pentagon, it is divid
into two or three triangles as shown in Fig. 3(b) an
Fig. 3(c) to find the heat capacity by the sam
procedure as that in Fig. 3(a). 

When the width of a phase transition zone is ve
narrow, the phase transition zone can be shown a
Fig. 3(d). In this case, the heat capacity can be obtai
in a similar manner as Eq. (25) as follows:

W= N〈 〉 W{ }

∇T= B[ ] T{ }

∇W= B[ ] T{ }

 
e 1=

E

∑ CT 0

0 CM

T·

W· 
 
 

+ KTT KTM

KMT KMM

T

W 
 
 

−
FT

FM 
 
 

 
 
 
 

e

=0

xp=xj+
T12 Tj–
Tk Tj–
---------------- xk xj–( )

xq=xk+
T12 Tk–
Tl Tk–
----------------- xl xk–( )

CT=  
R

∫ N{ }C1 N〈 〉dR+  
R2

∫ N{ }∆C12 N〈 〉dR

 
R2

∫ N{ }∆C12 N〈 〉dR=∆C12AR2

N1
2 0

N1
2

.

0 . sr tr( , )

CT=  
R

∫ N{ }C1 N〈 〉dR+  
R2+R3

∫ N{ }∆C12 N〈 〉dR

Fig. 3. Internally discontinuous, isoparametric elements. (1or 3 for
dried or wetted zone, 2 for phase transition zone).

Fig. 4. Heat capacity(C) at phase transition temperature (Te).
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If jm  is a constant in a discontinuous element, the
evaporation energy of inflow liquid is computed as
follows:

 (28)

Numerical Verification

In order to show the validity of the proposed numeri-
cal method, the drying process of a ceramic electric
insulator is simulated. A schematic view of a ceramic
electric insulator is illustrated in Fig. 5. The hatched
area is modeled for the simulation due to the symmetry.
In the finite element model, 290 nodes and 248
quadrilateral linear elements are employed. The green
insulator initially lies in a state of constant 25oC
temperature and 80 kg/m3 moisture. The ambient
temperature and moisture are 60oC and 40 kg/m3,
respectively. Adiabatic and symmetric conditions are
imposed on three sides except the boundary exposed to
the air. As time elapses, the heat and moisture transfer
from the boundary to the interior. 

Figure 6 and Fig. 7 show temperature and moistu
distributions after drying 5 hours. The present resul
shown as solid lines, are similar to Comini’s analys
[11], shown with dotted lines. As time goes on, it 
supposed that the hygro-thermal stress should be la
because of the big temperature and moisture gradien

Conclusion

For the finite element simulation to find temperatu
and moisture distributions in the ceramic drying pr
cess, a numerical approach to solve a dual phase 
blem is introduced. To verify the proposed numeric
method, the drying process of a ceramic elect
insulator is simulated. Through this study, the interna
discontinuous elements are suggested to efficien
describe a phase change phenomenon in the dry
process.
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