Journal of Ceramic Processing Research. Vol. 3, No. 3, pp. 141~145 (2002)

Ceramic
Processing Research

An efficient numerical method for incorporating phase changes in ceramic drying
process

Y.T. Keum* and K.H. Auh
Ceramic Processing Research Center (CPRC), Hanyang University, Seoul 133-791, Korea

The numerical simulation of ceramic drying process is difficult as the heat and moisture movements in green ceramics caused
by temperature gradients, moisture gradients, conduction, convection and evaporation should be considered. In the finite
element formulation for solving temperature and moisture distributions during the drying process, the internally discontinuous
interface elements are employed to avoid the numerical divergence problem arising from sudden changes in heat capacity in
phase zones. In order to show the reliability of the numerical method proposed in this study, the drying process of a ceramic
electric insulator is simulated and the results are compared with those of other investigators.
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Introduction momentum in porous media and Comati al [7]
performed numerical analysis of the two-dimensional
Computer-aided numerical methods like FEM, FDM, problem involving heat and mass transfer. The validity
and BEM are widely used to evaluate mechanical char-of this methodology in timber was verified by Thomas
acteristics as well as to optimize processing variables.et al [8] through the comparison of experimental and
Using the numerical methods, the mechanical charac-numerical results. Dhatt al [9] modeled a concrete
teristics of ceramics affected by temperature and mois-drying process and Gongt al [10] used the finite
ture movements in the drying process can be easilyelement method in the concrete drying process and
evaluated. investigated heat transfer velocity and moisture reduc-
Variations of temperature and moisture in the drying tion velocity. The stress distribution caused by heat and
process change the volume and induce the hygro-moisture transfer was analyzed by Lewisal [11]
thermal stress. The heat and moisture transfer and theusing the finite element method in the drying process
associated hygro-thermal stress are fundamental issuesf a brick, a ceramic electric insulator, and a basement
in heat-moisture-stress problems. However, in finding foundation. The hygro-thermal stress caused by heat
temperature profile and moisture distribution in green and moisture transfer in composite materials was also
ceramics during the drying process using FEM, the analyzed by Sitet al [12].
numerical divergence problem cannot be avoided due In this study, a numerical method solving the two-
to the changes in material properties in the dual phasephase problem in the finite element analysis for
area. temperature and moisture distributions during the
The interrelation between heat and moisture transferdrying process of ceramics is introduced. For the
in porous materials was established by Luikov who verification of the numerical approach, the drying
proposed a two-term relationship for the non-isother- process of a ceramic electric insulator is simulated.
mal moisture diffusion. The development of the theory
of transport phenomena in porous media has been Finite Element Formulation
summarized by Luikov [1-3] and Whitaker [4]. The
effects of the liquid and vapor transport, heat transport, The rate of temperature and moisture transfer in a
pressure gradient, and capillary flow were investigated body is caused by their flux gradients as well as source
by De Vrieset al [5, 6] and a set of coupled diffusion rates [1-3]:
equations of temperature and moisture contents was oT

proposed. Whitaker [4] analyzed the heat, mass, and CE:—D[ﬂqﬂ'q:DEﬂKMD]]W+KTE[DT)+I'q 1)
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where

J=AGT=TI+A(W-W, )+, (11)
AT =T W) (12
A =0, (13)
Motsture Fux A=(1-€)a,\ (14)
AR Aaz—% (15)

Fig. 1. Schematic view of heat and moisture transfer problem. a
bulk specific heat per unit volumg, is the heat flux Am:O(m—wS (16)

vector, j, is the moisture flux vector, iis the heat Kq

source functionK™ is the diffusion-thermal coefficient At the evaporation temperature during the heat and
tensor,KT is the heat conductivity tensoAM is the moisture transfer, a phase change phenomenon occurs
moisture diffusivity tensorA” is the thermal diffusion  such that the moisture within the material is liquefied
coefficient tensor, ané\? is the forced flux coefficient  or vaporized and two phases exist simultaneously. To
tensor. Figure 1 is a schematic diagram of the heat andanalyze effectively the heat and moisture moving
moisture transfer problem. During the drying process boundary problem during the phase transition process
of a ceramic product, the flux and source of heat andin an element, energy conservation is considered. A
moisture as well as traction are respectively subjectedschematic view of the heat and moisture moving
to simultaneously existing dried and wetted zones in boundary problem in the interface between the dried
the ceramic body. The problem definition provides the and wetted zones is shown in Fig. 2. As the latent heat
boundary conditions expressed as follows: of evaporation in the interface is due to the difference
in heat flux between the dried and wetted zones, the

T=Taon § ) energy conservation equation in the interface between

KOTn+j+a (T-Ty+(1-€)a, A(W-W =0 on S the dried zone and the wetted zone can be written as
4 follows:

W=W, on § (5) L (WX +] ) Migs=(i go—i o) Dhas (17)

K, OWn+j,,+tk00Tn+a,,(W-W,)=0 on § (6) where L is the latent heat of evaporation, W&/ the
SYS =3R resident moisture contenX is the position of the

, Y S,= @) . ; 4 ;

interface,nys is a unit normal vector in phase change

S;YS,=0R (8) zone,j4q is a heat flux vector in dried zone, gpgs a
heat flux vector in the wetted zone.

Defining the temperature T, moisture W, temperature
gradient OT , and moisture gradieniw in a finite
element as follows:

whereT,is a prescribed temperature on the boundary
Si, jq is heat flux on the boundary,SW, is a
prescribed moisture on the boundasy|jg is moisture
flux on the boundary &, is a thermal conductivity,.k

is moisture conductivityn is an outward normal vector T=INQ T} (18)
on the surface of the boundagy, is a convective heat
transfer coefficienty,, is a convective moisture transfer
coefficient, [?¢ is a ratio of the vapor diffusion
coefficient to the total diffusion coefficient of moisture,
[?]A is a heat of phase chang@]d is a thermo-
gradient coefficient, andRis a boundary of control
volume R. Eg. (3) and Eq. (5) represent boundary
conditions on the portion of the material boundary
where constant temperature and constant moisture ar
prescribed, respectively. Eq. (4) and Eg. (6) also
represent those portions on the boundary subjected t
heat and moisture flux. Eq. (4) and Eq. (6) can be
rewritten in the compact form as follows:

k,OTn+j,=0 on § 9

. Fig. 2. Schematic view of heat and moisture moving bour
k,OWn+j,=0 on § (10) problem in the interface.
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Fig. 3.Internally discontinuous, isoparametric elements. (1or 3 fo
dried or wetted zone, 2 for phase transition zone).

ATy
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Fig. 4.Heat capacity(C) at phase transition temperatye (T

W=INEW} (19) where T-0.9AT;< T,,< T.+0.5AT; is the transition
OT=[B}{T} (20) temperature separating zone 1 and zone.d4s The

_ phase transition temperature, af@; is the temper-
DW=[BI{ T} (21) ature width of the phase transition zone, as shown in
where <N> denotes an appropriate shape function, {T} Fig. 4. In a similar fashion, equations such as Eq. (23)
is a nodal temperature vector, {W} is a nodal moisture and Eq. (24) can be used to find the y-coordinates of
vector, and [B] is a differential matrix of shape point p and point g,yand Y, respectively.
function, the finite element equations can be expressed The heat capacity in the discontinuous element can

as follows: be computed by superimposing the difference in heat
capacity of different zones as follows:
E T T T ™™ OT |:
y 0C 09" gk KT 2 2 Hog (22 C'=[ {N}C,IN@®R+[ {N}AC,NGR  (25)
és1m o MIDWO | KMT kMMEWE Y R R,

© where R is a region of zone 2 and REC,-C, is the

where the matrices including the conductivity termis C difference in heat capacity between zone 1 and zone 2
and &, the stiffness terms K K™, KMT and KM, as seen in Fig. 3(a). The second term in Eq. (25) can be
and the force terms'fnd P are called heat capacity changed at the centroid,(y) of zone 2 as follows:
matrix, stiffness matrix and force vector, respectively.

If there exists two phases in a finite element, the N2 0
numerical divergence happens because of the change in ! 5
material properties, especially heat capacity. To avoid J‘ {N}AC,INIIR=AC A N7 (26)
this problem, internally discontinuous, isoparametric
elements [13] are introduced as shown in Fig. 3. There 0

are 4 sorts of elements according to the state of phases &

in an element. Because the change in temperature in Where AR2 is the area of R2 and (sr, tr) is the
the quadrilateral element is assumed to be linear, the'

coordinate of a centroid of the isoparametric element.
interface can be expressed as a straight line across th . . o

hen R2 is a quadrilateral or pentagon, it is divided

element. When the interface passes through the elemen

Nhto two or three triangles as shown in Fig. 3(b) and
sides at p and g, as shown in Fig. 3(a), the x-coordi-

. . ; Fig. 3(c) to find the heat capacity by the same
ggtl?;l g\fv E.omt p and point g are respectively calculated procedure as that in Fig. 3(a).

When the width of a phase transition zone is very
T narrow, the phase transition zone can be shown as in
Xp xJ+_|_12—_|_1(xk X;) (23) Fig. 3(d). In this case, the heat capacity can be obtained
in a similar manner as Eq. (25) as follows:

T,—T
X=X (X =%, ) (24) Cc'= [ AN}C,INTER+[  {N}AC,,[N[@R
TI_Tk R Ry+Rg
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Fig. 5. Schematic view of a ceramic electric insulator. === & Comind

Fig. 7. Comparison of moisture distribution in ceramic electric

insulator between Comini and present results.
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If jm is a constant in a discontinuous element, the Figure 6 and Fig. 7 show temperature and moisture
evaporation energy of inflow liquid is computed as distributions after drying 5 hours. The present results,
follows: shown as solid lines, are similar to Comini’s analysis
—_AM T g [11], shown with dotted lines. As time goes on, it is
=—(ATIW+A MT+A V) supposed that the hygro-thermal stress should be larger

—(AM[BI{ W} +AT[Bl{ T} +A%GINGW}) (28) because of the big temperature and moisture gradients.

im

Numerical Verification Conclusion

In order to show the validity of the proposed numeri-  For the finite element simulation to find temperature
cal method, the drying process of a ceramic electricand moisture distributions in the ceramic drying pro-
insulator is simulated. A schematic view of a ceramic cess, a numerical approach to solve a dual phase pro-
electric insulator is illustrated in Fig. 5. The hatched blem is introduced. To verify the proposed numerical
area is modeled for the simulation due to the symmetry. method, the drying process of a ceramic electric
In the finite element model, 290 nodes and 248 insulator is simulated. Through this study, the internally
guadrilateral linear elements are employed. The greendiscontinuous elements are suggested to efficiently
insulator initially lies in a state of constant °@5 describe a phase change phenomenon in the drying
temperature and 80 kgfmmoisture. The ambient process.
temperature and moisture are°®0and 40 kg/rf
respectively. Adiabatic and symmetric conditions are Acknowledgements
imposed on three sides except the boundary exposed to
the air. As time elapses, the heat and moisture transfer This work was supported by the Korea Science and
from the boundary to the interior. Engineering Foundation (KOSEF) through the Ceramic

Processing Research Center at Hanyang University.
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